Глава 17 фундаменты при динамических воздействиях
Особенности динамических воздействий на сооружении и грунты основании
Динамические нагрузки. Динамические воздействия на сооружения и грунты основания могут быть вызваны различными причинами: технологией ведения строительных работ (уплотнение грунта трамбовками, вибраторами; забивка свай и шпунта и т. п.); технологическими или эксплуатационными условиями (движение неуравновешенных масс стационарно установленных машин и оборудования; движение наземного и подземного транспорта и т. д.); локальными природными или инженерно-геологическими процессами, включая последствия хозяйственной деятельности человека (порывы ветра; удары волн; карстовые провалы; обвалы; откачка больших масс воды или нагнетание иод большим давлением масс воды в глубокие скважины; создание крупных водохранилищ в горно-сейсмических районах, мощные взрывы и т. д. и т. п.); современными тектоническими д вижениями, происходящими в верхней части земной коры н проявляющимися на ее поверхности (землетрясения).
Эти воздействия проявляются в виде динамических нагрузок, быстро изменяющихся во времени но величине, направлению, а иногда и по положению. Следствием динамических нагрузок являются волновые колебания, возникающие в сооружении и грунтах основания. При этом сооружение может быть как источником колебаний (например, фундаменты машин и оборудования с динамическими нагрузками), так и воспринимать колебания, передающиеся от других источников. Общая картина распространения колебаний может быть крайне сложной (рас. 17.1).
Различаются вибрационные нагрузки, при которых силы, их вызывающие, изменяются по гармоническому закону (например, вращение частей машин с неуравновешенными массами); ударные (импульсные) нагрузки, характеризуемые однократными и многократными кратковременными импульсами (взрывы, кузнечные молоты, забивка свай и др.); сейсмические нагрузки, возникающие при землетрясении. При работе некоторых машин возникает сочета- 496
ние вибрационных и удар- ных нагрузок. Локальные инженерно-геологические процессы вызывают на- грузки, которые часто на- зывают микросейсми- ческими.
Динамические нагрузки могут различаться по инте- нсивности (слабые, силь- ные и сверхсильные) и по времени действия (кратко- временные и длительные).
Они по-разному будут воз- действовать на сооружение и грунты основания.
Виды и характеристики колебаний. Если к сооруже-
нию приложить кратковременную нагрузку, вызывающую его ко- лебания, то колебательные движения сооружения будут продо- лжаться и после ее устранения. Такие колебания называют сво- бодными или собственными. Характеристики собственных ко- лебаний определяются параметрами сооружения (массой и же- сткостью конструкции, видом фундамента). С течением времени из-за вязкого сопротивления воздуха и особенно грунтов основания произойдет рассеивание (диссипация) энергии первоначального импульса, поэтому свободные колебания будут затухающими.
Если же сооружение или основание в процессе колебания будет все время находиться под действием возмущающих сил, то такие колебания называют вынужденными. Они не затухают в течение всего времени действия сил. Характеристики вынужденных колебаний зависят как от параметров колеблющейся системы, так и от закона изменения возмущающих сил.
Поскольку в расчетах фундаментов на динамические воздействия большое значение имеют характеристики колебаний, приведем основные понятия, подробно рассматриваемые в курсе физики. Периодическими называют незатухающие колебания, описываемые функцией Z(t)=Z(t+KT) (рис. 17.2, а, б). Если периодические колебания могут быть записаны по закону синуса или косинуса, например Z(f) = asin(wf+y), то их называют гармоническими (рис. 17.2, а). Периодом колебания Т называют интервал времения, за который система совершает один цикл колебаний, возвращаясь в исходное состояние; частотой колебаний /— количество циклов колебаний за единицу времени. За единицу частоты гармонических колебаний принимается герц (Гц), равный одному циклу колебаний в секунду. Величину отклонения колеблющейся
Рис. 17.1. Динамическое воздействие источников колебаний на сооружение:
1 — транспортный тоннель; 2 — наземный транспорт; 3 — забивка свай; 4 — сооружение; 5 — установка с динамической нагрузкой; б — напластование грунтов
точки от ее положения равно- весия называют амплитудой колебания а, а ее удвоенную ве- личину (2а) — размахом коле- баний.
Непериодические затуха- ющие колебания (рис. 172, в) характеризуются логарифми- ческим декрементом затухания 8=In (Z„/Zn+О или коэффициен- том затухания е=8/Т. Чем бо- льше коэффициент затухания б, тем быстрее затухают колеба- ния.
Важно отметить, что очень сложные графики колебаний, регистрируемые при наблюде- нии за реальными процессами, могут быть представлены как сочетания нескольких графиков простых колебаний.
Если собственная частота колебаний системы совпадает с частотой вынужденных коле- баний, наступает явление ре- зонанса, сопроводающееся воз- растанием амплитуды колеба-
ний точек системы. Известный из курса физики случай разрушения моста, по которому строевым шагом проходил полк солдат, связан именно с возникновением резонанса.
Явления, происходящие в грунтах при динамических воздействиях. Влияние динамических воздействий на изменение свойств грунтов зависит как от интенсивности нагрузок, частоты и продолжительности их действия, так и от вида грунта, его состояния по плотности и влажности.
Исследованиям этих сложных проблем посвящены работы Д. Д. Баркана, О. А. Савинова, Н. Н. Маслова, П. JI. Иванова, Н. Д. Красникова и др.
В практике строительства известны случаи, когда длительная работа машин или оборудования с динамическими нагрузками вызывала значительные осадки расположенных на некотором удалении конструкций, приводящие к их авариям и даже разрушению. Известны также случаи возникновения в настоящее время дополнительных осадок старинных зданий, построенных на слабых грунтах, из-за динамического влияния городского транспорта при воз- 498
Рис. 17.2. Графики колебаний;
а—гармонические незатухающие; б—иери- одическае с несимметричным циклом; в — гармонические затухающие
росшей интенсивности его движения. Эти процессы связаны с явлением виброкомпрессии — дополнительным уплотнением рыхлых несвязных грунтов даже при слабых и умеренных вибрационных или часто повторяющихся ударных нагрузках.
Механизм виброкомпрессии заключается в том, что динамическое воздействие на грунт приводит к разрушению структуры и возникновению вследствие этого взаимного перемещения частиц. При увеличении частоты вибрации перемещение частиц приобретает характер длительного накопления деформаций во времени, названного П. JI. Ивановым виброползучестью. Он приводит следующий характерный пример виброползучести. В Нижнем Новгороде было построено на песчаном основании здание кузнечного цеха. Известно, что стабилизация осадок песчаных оснований при действии статических нагрузок происходит очень быстро, а величина их относительно невелика. В рассмотренном же случае осадки, достигшие 30 см, развивались в течение семи лет без существенного затухания деформаций. Такой характер деформаций можно объяснить только длительным развитием процесса ползучести песков при действии повторяющихся динамических нагрузок.
Длительные вибрационные и ударные нагрузки могут приводить к снижению сопротивления сдвигу как песчаных, так и глинистых грунтов, особенно в водонасыщенном состоянии. Это вызывает уменьшение несущей способности оснований при динамической нагрузке на фундамент по сравнению с ее величиной при статической нагрузке. В глинистых грунтах, особенно пластичной и текучей консистенции, при динамических воздействиях отмечается разжижение (тиксотропия) грунта. Разжижение свойственно и водонасыщенным песчаным грунтам различной крупности, особенно пылеватым и мелким. В зависимости от интенсивности и продолжительности динамического воздействия разжижение может сопровождаться последующим уплотнением песчаного грунта под действием массовых сил.
Влияние разжижения грунта может иметь как положительный характер (уменьшение сопротивления при забивке свай с последующим его восстановлением), так и отрицательный. Б. И. Далматов приводит пример, когда в долине р. Ганг во время землетрясения в грунте «тонули» одноэтажные здания, получавшие осадку 1. 2 м. Осадка сопровождалась фонтанированием разжиженного песка в местах разрыва поверхностного слоя грунта.
Описанные явления свидетельствуют о том, что проектирование фундаментов сооружений при действии динамических нагрузок всегда должно проводиться с учетом возможного уменьшения несущей способности грунтов основания. Для ответственных сооружений, чувствительных к неравномерным деформациям, особенно располагаемых на водонасыщенных мелких и пылеватых песках и глинах, необходимо учитывать дополнительные осадки,
Источник
Армирование массивных фундаментов
Страница 1 из 4 | 1 | 2 | 3 | > | 4 » |
17.06.2013, 09:56
Проектирование гидротехнических сооружений
17.06.2013, 15:18
17.06.2013, 15:28
Проектирование гидротехнических сооружений
17.06.2013, 16:35
18.06.2013, 14:05
18.06.2013, 14:36
Проектирование гидротехнических сооружений
18.06.2013, 16:51
18.06.2013, 16:58
18.06.2013, 17:19
19.06.2013, 10:52
19.06.2013, 10:55
19.06.2013, 11:16
19.06.2013, 16:35
19.06.2013, 22:24
Во наговорили-то.
Поверхности в любом случае надо армировать, хотя бы из предположения того, что сверху слона уронят или кто-нить молотком тюкнет. Так же температурка повлияет не в лучшую сторону.
Рабочее армирование, присоединяюсь к многим отписавшим, скорее всего не потребуется.
П.С. арматуру вообще то всегда подбирают по напряжениям, для тонкостенных элементов справедлива теория плоских сечений, на которой и основан СНИПовский расчет, и поэтому никто не заморачивается. НООООО. Это частный случай работы упругого тела, на котором жизнь не заканчивается.
19.06.2013, 22:50
19.06.2013, 23:18
19.06.2013, 23:50
25.06.2013, 09:49
пытаюсь быть инженером
25.06.2013, 10:33
ПРОДОЛЬНОЕ И ПОПЕРЕЧНОЕ АРМИРОВАНИЕ |
3.6. Расстояние в свету между арматурными стержнями по высоте и ширине сечения должно обеспечивать совместную работу арматуры с бетоном и назначаться с учетом удобства укладки и уплотнения бетонной смеси.
Расстояние в свету между стержнями для немассивных конструкций следует принимать в соответствии с требованиями СНиП 2.03.01-84.
В массивных железобетонных конструкциях расстояния в свету между стержнями рабочей арматуры по ширине сечения определяются крупностью заполнителя бетона, но не менее 2,5d где d — диаметр рабочей арматуры.
3.7. Толщину защитного слоя бетона следует принимать:
не менее 30 мм для рабочей арматуры и 20 мм для распределительной арматуры и хомутов в балках и плитах высотой до 1м, а также в колоннах с меньшей стороной до 1 м:
не менее 60 мм и не менее диаметра стержня для рабочей и распределительной арматуры массивных конструкций с минимальным размером сечения более 1 м.
Толщину защитного слоя бетона в железобетонных конструкциях морских гидротехнических сооружений необходимо принимать:
для рабочей арматуры стержневой — не менее: 50 мм:
для распределительной арматуры и хомутов — не менее 30 мм.
Для сборных железобетонных элeмeнтoв заводского изготовления при применении бетона класса по прочности на сжатие В15 и выше толщина защитного слоя может быть уменьшена на 10 мм против указанных выше величин.
При эксплуатации железобетонных конструкций в условиях агрессивной среды толщину защитного слоя необходимо назначать с учетом требований СНиП 2.03.11-85.
3.8. В массивных нетрещиностойких железобетонных плитах и стенах сечением высотой 60 см и более с коэффициентом армирования при надлежащем обосновании допускается многорядное расположение арматуры по сечению элемента, способствующее уменьшению максимальной ширины раскрытия трещин по высоте сечения.
3.9. Если стержни арматуры размещаются в два и более ряда, то диаметры стержней рядов должны отличаться друг от друга не более чем на 40 %.
3.10. Из условия долговечности гидротехнических сооружений без предварительного напряжения диаметр арматуры следует принимать для рабочей стержневой арматуры из горячекатаной стали не менее 10 мм, для спиралей и для каркасов и сеток вязаных или изготовленных с применением контактной сварки — не менее 6 мм.
3.11. Продольные стержни растянутой и сжатой арматуры должны быть заведены за нормальное или наклонное к продольной оси элемента сечение, где они не требуются по расчету, в соответствии с требованием СНиП 2.03.01-84.
3.12. Распределительную арматуру для элементов, работающих в одном направлении, следует назначать в размере не более 10% площади рабочей арматуры в месте наибольшего изгибающего момента.
3.13. При выполнении сварных соединений арматуры следует выполнять требования СНиП 2.03.01-84.
3.14. В конструкциях, рассчитываемых на выносливость, в одном сечении должно стыковаться, как правило, не более половины стержней растянутой рабочей арматуры. Применение стыков внахлестку (без сварки и со сваркой) для растянутой рабочей арматуры в этих конструкциях не допускается.
3.15. В изгибаемых элементах при высоте сечения более 700 мм у боковых граней следует устанавливать конструктивные продольные стержни. Расстояние между ними по высоте должно быть не более 400 мм, площадь поперечного сечения — не менее 0,1 % площади сечения бетона со следующими размерами: высота элемента равна расстоянию между стержнями, ширина — половине ширины элемента, но не более 200 мм.
3.16. У всех поверхностей железобетонных элементов, вблизи которых ставится продольная расчетная арматура, необходимо предусматривать также поперечную арматуру, охватывающую крайние продольные стержни. Расстояние между поперечными стержнями у каждой поверхности элемента должно быть не более 500 мм и не более удвоенной ширины грани элемента.
3.17. Во внецентренно сжатых линейных элементах, а также в сжатой зоне изгибаемых элементов при наличии учитываемой в расчете сжатой продольной арматуры необходимо устанавливать хомуты.
Расстояние между хомутами следует принимать в вязаных каркасах не более 15d, в сварных — не более 20d где d — наименьший диаметр сжатой продольной арматуры. В обоих случаях расстояние между хомутами должно быть не более 500 мм. Конструкция поперечной арматуры должна обеспечивать закрепление сжатых продольных стержней от бокового выпучивания в любом направлении. В местах стыковки рабочей арматуры внахлестку без сварки или если общее насыщение элемента продольной арматуры составляет более 3 % хомуты следует устанавливать на расстоянии не более 10d и не более 300 мм.
В массивных внецентренно сжатых элементах, рассчитанных без учета сжатой арматуры, расстояние между конструктивными поперечными связями (хомутами) допускается увеличивать до двух высот (ширин) элемента.
3.18. Расстояние между вертикальными поперечными стержнями в элементах, не имеющих отогнутой арматуры, и в случаях, когда поперечная арматура требуется по расчету, необходимо принимать:
а) на приопорных участках (не менее 1/4 пролета) при высоте сечения менее или равном 450 мм — не более h/2 и не более 150мм;
при высоте сечения более 2000 мм — не более 3/4h и не более 500 мм;
при высоте сечения, равной или более 2000 мм — не более h/З:
б) на остальной части пролета при высоте сечения 300—2000 мм — не более 3/4h м не более 500 мм;
при высоте сечения более 2000 мм — не более 3/4h.
3.19. В элементах, работающих на изгиб с кручением, вязаные хомуты должны быть замкнутыми с перепуском их концов на 30 диаметров хомута, а при сварных каркасах все поперечные стержни обоих направлений должны быть приварены к угловым продольным стержням, образуя замкнутый контур.
3.20. Отверстия в железобетонных элементах следует располагать в пределах ячеек арматурных сеток и каркасов.
Отверстия с размерами, превышающими размеры ячеек сеток, должны окаймляться дополнительной арматурой. Суммарная площадь ее сечения должна быть не менее сечения прерванной рабочей арматуры того же направления.
3.21. При проектировании сталежелезобетонных конструкций, в которых обеспечивается совместная работа арматуры и стальной оболочки, толщину последней следует принимать минимальной по условиям монтажа и транспортирования.
3.22. Арматура железобетонных конструкций должна предусматриваться в виде армоферм, армопакетов, сварных каркасов и сеток.
Типы армоконструкций следует назначать с учетом принятого способа производства работ. Они должны обеспечивать возможность механизированной подачи бетона и тщательной его проработки. Установку арматуры в железобетонных конструкциях необходимо производить индустриальными методами при максимальной экономии металла на конструктивные элементы для закрепления ее в блоке бетонирования.
Увеличение площади сечения арматуры, определенной расчетом на эксплуатационные нагрузки, для восприятия нагрузок строительного периода не допускается.
Источник