Правда ли, что Вселенная на 99% состоит из пустоты?
Все мы знаем, что абсолютно все видимое и невидимое во Вселенной состоит из атомов (темная материя не в счет, так как никто толком не знает, из чего она состоит). Каждая такая частица содержит в себе ядро и электроны, которые крутятся вокруг него, будучи связанными с ядром благодаря электромагнитному взаимодействию. Однако ядро атома настолько мало, что если мысленно себе представить растянутый до размеров футбольного поля атом, то его ядро будет иметь размер всего лишь с маковое зерно. Для чего атому нужно столько лишнего пространства и правда ли, что наша Вселенная на 99% состоит из пустоты?
Возможно, Вселенная на 99 % состоит из пустоты. Почему же это так?
Почему мы не можем ходить сквозь стены?
Несмотря на то, что большую часть атома составляет пустота, крошечные его составляющие — электроны, играют весьма важную роль в “заполнении” этой пустоты. Так, хотя электронов в атоме обычно совсем немного, их поведение сродни большой стае птиц, в которой при синхронном движении нет какой-либо четкой границы. Все, что мы можем видеть при таком движении, представляет из себя хаотично изменяющуюся неопределенную форму. Электроны, постоянно меняя свое расположение в атоме, движутся строго по уравнению, которое в XX веке впервые описал знаменитый ученый Эрвин Шредингер. Да-да, тот самый ученый, который любил ставить квантовые опыты над кошками.
Танцуя внутри атома, электроны могут получать и отдавать поступающую извне энергию. Именно поэтому свет не способен проникнуть сквозь стену, так как электроны атомов стены попросту забирают энергию света, отдавая ее спустя небольшой промежуток времени. Благодаря подобному явлению приема и отдачи света, находящаяся рядом с вами стена кажется твердой и непрозрачной.
Может ли Вселенная быть пустой?
Вселенная славится объектами, которые способны удивить своими колоссальными размерами любого земного скептика. Так, самым большим объектом в изученной нами части Вселенной признан объект, названный астрономами Великой стеной Геркулес — Северная Корона. Гигантская структура простирается аж на целых 10 миллиардов световых лет и представляет из себя огромное количество собранных вместе галактик разных форм и размеров.
Великая стена Геркулес — Северная Корона простирается более чем на 10 миллиардов световых лет
По сравнению с гигантской структурой, наша Солнечная Система представляется маленькой точкой, затерянной где-то далеко на краю галактики Млечный Путь. Несмотря на это, гравитационное поле нашего Солнца (и не только его, но и других звезд Вселенной) в несколько тысяч раз превышает его собственные размеры. Благодаря такой мудрой настройке, планеты могут вращаться вокруг орбит своих звезд, не опасаясь улететь куда-то далеко в глубокий космос.
Движение электронов в атоме схоже с хаотичным движением птиц в стае
Похожая ситуация возникает и внутри атома. Соотношение размеров электронов, атомного ядра и расстояний между ними крайне напоминает соотношение размеров космических тел и их расстояний в макромире. Иными словами, огромные расстояния внутри атома могут пролить свет на вопрос о возможной пустоте Вселенной.
Если это так, то Вселенная действительно на 99 % состоит из пустоты, в то время как 1 % всей видимой глазу материи создает известный нам окружающий мир. Несмотря на этот невероятный факт, все это огромное “ничего” вмещает в себя множество невидимых и еще неизученных сил, которые, возможно, мы однажды сможем обуздать.
Если вам понравилась данная статья, приглашаю вас присоединиться к нашему каналу на Яндекс.Дзен, где вы сможете найти еще больше полезной информации из области популярной науки и техники.
Источник
Атомы: строительные блоки молекул
Если молекулы – основные структуры, задействованные в химии – это слова, из которых состоят все окружающие нас материалы, тогда атомы – это буквы, строительные блоки молекул. Слова бывают разной длины, и типичная молекула тоже может содержать несколько атомов, или несколько сотен, или даже сто тысяч атомов. Молекула столовой соли NaCl состоит из двух атомов, натрия Na и хлора Cl. Молекула воды H2O содержит два атома водорода и один кислорода. Молекула столового сахара C12H22O11 содержит 12 атомов углерода, 11 кислорода и 22 водорода, организованных определённым образом.
Откуда нам известно о существовании атомов? Иногда их можно «видеть», так же, как мы видим молекулы, которые они могут формировать. Не глазами, но более продвинутыми устройствами. Один из методов использует сканирующий туннельный микроскоп, способный показывать атомы в кристалле или даже передвигать их по одному. Другой метод использует нашу возможность захвата ионов (немного изменённых атомов – подробности ниже).
На фото – три иона, пойманных одновременно. На них падает свет, они поглощают его и снова испускают. Повторно испущенный свет можно обнаружить, благодаря чему мы можем увидеть, где находятся ионы – примерно так отражение света от небольшого, но яркого бриллианта может помочь нам найти его.
Сколько же типов атомов существует? Типы называются «химическими элементами» и точное их количество зависит от того, как их считать. Но допустим, что атомный алфавит состоит из примерно сотни химических элементов, а к тонкостям подсчёта вернёмся позже. Так же, как мы могли назначить буквам алфавита от А до Я номера от 1 до 33, каждому элементу назначается не только имя, но и атомный номер (обозначается «Z»). Самые простые атомы – у водорода, их атомный номер = 1. Самые сложные в изобилии встречаются в природе, это уран с атомным номером 92. Другие – кислород (8), азот (7), кальций (20), криптон (36), лантан (57), платина (78). Полный список ищите в периодической системе элементов Менделеева. У каждого элемента своя химия – то, как он ведёт себя внутри молекул – примерно так, как у каждой буквы есть свои правила, по которым она может встречаться в словах.
Вопросы, которые можно задать об атомах:
1. Из чего состоят атомы?
2. В чём смысл атомного номера?
3. Каков главный источник различий в химическом поведении атомов разных элементов?
4. До какой степени разные атомы одного элемента схожи между собой?
5. Как части атома удерживаются вместе?
6. Почему атомы удерживаются вместе и образуют молекулы?
Оказывается, на все эти вопросы лучше всего отвечать, начав с первого: из чего состоят атомы? Атомы состоят из того, что обычно называют «субатомными частицами» (к сожалению, этот термин некорректен, поскольку у этих «частиц» есть некоторые свойства, частицам не присущие). Конкретнее, атомы состоят из набора небольших и очень лёгких электронов, окружающих крохотное, но тяжёлое атомное ядро, в котором содержится большая часть массы атома. Ядро состоит из других «частиц», в свою очередь также состоящих из других «частиц», и мы до них ещё доберёмся.
Рисованный атом
Частенько мы видим изображения атомов, нарисованные на книгах по химии, на рекламках и предупреждающих знаках. Пример – рис. 1. Он передаёт очень грубую идею того, как устроен атом: снаружи у него есть определённое количество электронов (синие), и они вращаются вокруг центрального атомного ядра. Ядро – это скопление протонов (красные) и нейтронов (белые).
Теперь мы можем ответить на 2-й вопрос: что означает атомное число Z? Это просто количество протонов в ядре. У кислорода атомный номер 8, и у него в ядре 8 протонов.
В простейших условиях атомное число также равняется количеству электронов атома. С количеством нейтронов всё сложнее, мы вернёмся к этому позже. У электронов отрицательный электрический заряд (-е), а у протонов – положительный (+е). Нейтроны нейтральны, электрического заряда у них нет. Когда количество электронов и протонов совпадает, их заряды взаимно уничтожаются, и у атома электрического заряда не наблюдается – такой атом нейтрален.
Но нет ничего необычного – к примеру, в процессе формирования молекул – если атом приобретёт или потеряет один или несколько внешних, валентных электронов. В этом случае электрические заряды электронов и протонов не уничтожаются, и получившийся заряженный атом называют ионом.
Более реалистичный атом
Хотя рис. 1 примерно описывает архитектуру атома – электроны действительно находятся снаружи, а ядро, состоящее из протонов и нейтронов, в середине – он совершенно не передаёт реальную форму и суть атома, поскольку он выполнен не в масштабе, а мы живём в квантовом мире, в котором объекты ведут себя так, что их сложно нарисовать или представить.
С проблемой масштаба можно разобраться, нарисовав более точное (хотя всё ещё несовершенное) изображение, рис. 2.
Рис 2. Атом – по большей части пуст (серая область). По нему быстро движутся электроны (голубые точки, нарисованы не в масштабе, а гораздо больше). В центре находится тяжёлое ядро (красные и белые точки, нарисованы больше, чем в масштабе).
Вот, что я попытался передать этим изображением. Во-первых, электроны очень, очень малы, настолько малы, что мы так и не смогли измерить их размер – может статься, что они точечные и не имеют размера, но они точно не больше, чем 1/100 000 000 от диаметра атома. Во-вторых, ядра (и протоны с нейтронами, их составляющие) также крайне малы, хотя они и больше, чем электроны. Их размер измерен, и он примерно в 10 000 – 100 000 раз меньше диаметра атома. Атом немного похож на деревню. Протоны и нейтроны в ядре – большие дома, находящиеся в центре деревни, а электроны – далеко разбросанные фермерские домики. На большей части сельской местности растут зерновые культуры и нет домов. И хотя территория, считающаяся частью деревни, может быть большой, реально занимаемая домами площадь очень мала.
Но эта аналогия не полная, поскольку электроны, в отличие от фермерских домиков, очень быстро двигаются по серому региону на картинке и вокруг ядра со скоростями порядка 1% от скорости света. Покрываемая ими территория обычно не сферическая, а более сложной формы, кроме того не все электроны перемещаются по одной и той же территории.
Но, как я вас предупреждал, рис. 2 тоже не точный. Во-первых, нужно было бы нарисовать ядро в тысячи раз меньше, а электроны – в миллионы раз меньше, только тогда их не было бы видно. Если бы атом был размером с вашу спальню, то его ядро было бы размером с пылинку. По сравнению со своими компонентами, атомы огромны! В каком-то смысле большую часть атома составляет пустота!
Во-вторых, изображение не передаёт мутную природу квантовой механики. Уравнения квантовой механики описывают и предсказывают поведение молекул, атомов и субатомных частиц, и эти уравнения говорят нам, что у этих частиц могут быть очень странные и неинтуитивные свойства. Хотя электроны в каком-то смысле точечные (допустим, если вы захотите столкнуть два электрона друг с другом, то обнаружите, что можете сдвинуть их вместе на сколь угодно малое расстояние, и они ничем не выдадут своей внутренней структуры, если она вообще есть), есть возможность сделать так, что они, будучи оставленными в покое, будут распространяться как волна и заполнят всё серое пространство на рис. 2. Если это звучит странно, это не оттого, что вы чего-то не поняли: это странно и об этом тяжело думать. Я-то уж точно не знаю, как нарисовать атом, чтобы не вводить вас в заблуждение, и эксперты всё ещё спорят о том, как лучше всего о нём думать. Так что пока просто примите это как странный факт.
Размер электрона слишком мал для измерения, и его масса настолько мала, что электрон может распространиться по всему атому. А вот у ядра есть вполне измеренный и известный размер, а его масса так велика – больше 99,9% массы всего атома – что оно вообще не распределяется в пространстве. Ядро сидит в середине серой области.
Атом и его химия
Лучший приходящий мне в голову способ описать атом: большая часть массы атома содержится в ядре, находящемся в его центре, вокруг которого распределились чрезвычайно мелкие электроны гораздо меньшей массы, причём сделали это совершенно не так, как ведут себя частицы, заполнив всю серую область рис. 2.
Небольшой размер ядра по отношению к полному размеру атома, и то, что оно обычно находится в его центре, объясняет, почему оно играет относительно слабую роль в химии. Химия происходит – то есть, формируются и меняются молекулы – когда атомы приближаются друг к другу, а это происходит, когда внешние, валентные электроны одного атома близко подходят к внешним электронам другого – когда край серой области одного атома приближается к краю серой области другого. В химических процессах атомное ядро остаётся в центрах атомов, и никогда не приближается к другим ядрам. Основная роль ядра – обеспечение положительного заряда, удерживающего электроны, и большей части массы (определяющей, как сложно другим объектам передвигать этот атом).
Это отвечает на 3-й вопрос: химию атома в основном определяют подробности, связанные с его внешними электронами. Эти детали можно узнать (сложным способом, через уравнения квантовой механики), исходя из атомного номера Z.
Вместо того, чтобы заняться химией – темой, которой хватит на целый курс – мы перейдём на уровень ниже, к субатомным частицам, по пути отвечая на другие вопросы. Перечислим вопросы, с которыми мы разобрались, и вопросы, которые ещё предстоит изучить.
1. Из чего состоят атомы? Снаружи – электроны, в центре – атомное ядро (из протонов и нейтронов).
2. В чём смысл атомного номера? Это количество протонов в ядре атома, которое, в обычных условиях равно количеству электронов, его окружающих.
3. Каков главный источник различий в химическом поведении атомов разных элементов? Свойства внешних электронов, определяемые общим количеством электронов у каждого элемента, к примеру, атомным номером.
4. До какой степени разные атомы одного элемента схожи между собой? Обсудим это в статье про изотопы.
5. Как части атома удерживаются вместе? Обсудим это в статье о роли электрических сил и квантовой механики.
6. Почему атомы удерживаются вместе и образуют молекулы? Обсудим это в статье о роли электронов и электрических сил в построении молекул из атомов.
А вот вам ещё вопрос, который мог возникнуть при изучении рис. 2:
Если атом – по большей части пуст, почему объекты кажутся твёрдыми? Почему нельзя протянуть руку через экран компьютера, если экран состоит из атомов, по большей части пустых?
Источник
Что такое атом, и правда ли, что всё состоит из пустоты?
Со школьной программы вы наверняка помните, что атомы это мельчайшие частицы, из которых состоит вся материя во Вселенной; и наверняка помните простейшую схему атома, где в центре находится ядро, состоящее из протонов и нейтронов, а вокруг него на определённом расстоянии перемещаются электроны. Это простейшая схема, но по ней вполне понятно как различаются сами атомы — именно количество протонов и нейтронов в центре атома влияет на то, какой перед нами атом. Если к атому углерода (в котором 6 протонов), добавить ещё один протон, то у нас получится уже атом азота. Если добавляется только нейтрон то обычно получается изотоп (более тяжёлый вариант того же атома)
На рисунке 2 изображены орбиты электронов (правильно они называются орбиталями), но электроны движутся по ним не как планеты вокруг звёзд; орбиталями скорее обозначается пространство вокруг атома, в котором с наибольшей степенью вероятности может быть зафиксирован электрон. Ещё часто встречается такое выражение, что электрон как бы размазан по этой орбитале. Так же электроны при определённых обстоятельствах могут перескакивать на другую орбиталь, при том такой скачок будет весьма интересным – электрон не может находиться между орбиталями, поэтому он переместится мгновенно, минуя пространство между ними (всё равно что вам для перехода из одной комнаты в другую, не требовалось бы идти по коридору, а перемещение произошло бы мгновенно).
Кстати на рисунке 2 изображены достаточно условные схемы, во-первых, на одной орбитале может находиться не более двух электронов, и то при условии что у них разные спины(spin); во-вторых, размер ядра и расстояние до орбиталей отображены не пропорционально.
На самом деле ядро – это лишь малая точка в центре атома, а электроны находятся на значительном расстоянии от него. Само же пространство вокруг ядра состоит из пустоты, но насколько велико это пространство? Для большей наглядности нам нужно включить воображение и представить что мы увеличили абсолютно любой отдельно взятый атом (хоть атом из вашего тела, хоть атом из воды или воздуха), до размеров, скажем с самый большой футбольный стадион.
И так, границы стадиона, за зрительскими трибунами – это крайние орбитали на которых мы можем наблюдать электроны нашего атома. Можно представить, что стадион заключен в огромную прозрачную сферу, она то и будет символизировать увеличенный атом. Но с чем будет тогда сравним размер ядра? Может, с самим футбольным полем, или с центральным кругом на нём? Нет, размер ядра в нашем сравнении, не превышал бы размеров футбольного мяча (или скорее даже горошины) в центре поля, а всё остальное пространство было бы пустым. В этом пространстве перемещаются электроны, но само по себе оно пустое, и эта пустота составляет 99.99% всего размера атома. Все атомы состоят на 99.99% из пустоты, и весь их вес заключен лишь в ядро, а так как всё состоит из различных атомов, то и наши тела тоже состоят практически из ничего.
Наше тело кажется нам достаточно плотным (как собственно говоря, и все окружающие нас предметы), но оно полностью состоит из атомов, которые образуют различные молекулы и соединения. Атомы почти полностью пусты — что было бы, если эту пустоту убрать? Оставить только ядра атомов и электроны? Давайте представим, что мы могли бы убрать всё пустое пространство из атомов, из которых состоят все люди на планете (а нас более 7 млрд. человек!). Без пустого пространства в атомах, всё население Земли могло бы поместиться в спичечный коробок, но этот коробок весил бы столько же, сколько весят все люди вместе взятые, ведь мы убрали только пустоту, а всю материальную сущность оставили.
Если мы мысленно уберём всю пустоту из атомов какого-либо небоскрёба, то от него останется лишь песчинка, но она будет весить миллионы тонн — столько же, сколько сам небоскрёб.
Источник