5.5.3. Определение основных размеров фундаментов (ч. 3)
Б. ВНЕЦЕНТРЕННО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ
Размеры внецентренно нагруженных фундаментов определяются исходя из условий:
где р — среднее давление под подошвой фундамента от нагрузок для расчета оснований по деформациям; pmax — максимальное краевое давление под подошвой фундамента; р c max — то же, в угловой точке при действии моментов сил в двух направлениях; R — расчетное сопротивление грунта основания.
Максимальное и минимальное давления под краем фундамента мелкого заложения при действии момента сил относительно одной из главных осей инерции площади подошвы определяется по формуле
где N — суммарная вертикальная нагрузка на основание, включая вес фундамента и грунта на его обрезах, кН; A — площадь подошвы фундамента, м 2 ; Мх — момент сил относительно центра подошвы фундамента, кН·м; y — расстояние от главной оси инерции, перпендикулярной плоскости действия момента сил, до наиболее удаленных точек подошвы фундамента, м; Ix — момент инерции площади подошвы фундамента относительно той же оси, м 4 .
Для прямоугольных фундаментов формула (5.53) приводится к виду
где Wx — момент сопротивления подошвы, м 3 ; ex = Mx/N — эксцентриситет равнодействующей вертикальной нагрузки относительно центра подошвы фундамента, м; l — размер подошвы фундамента в направлении действия момента, м.
При действии моментов сил относительно обеих главных осей инерции давления в угловых точках подошвы фундамента определяется по формуле
или для прямоугольной подошвы
где Мх, My, Iх, Iy, ex, ey, x, у — моменты сил, моменты инерции подошвы эксцентриситеты и координаты рассматриваемой точки относительно соответствующих осей; l и b — размеры подошвы фундамента.
Условия (5.50)—(5.52) обычно проверяются для двух сочетаний нагрузок, соответствующих максимальным значениям нормальной силы или момента.
Относительный эксцентриситет вертикальной нагрузки на фундамент ε = е/l рекомендуется ограничивать следующими значениями:
εu = 1/10 — для фундаментов под колонны производственных зданий с мостовыми кранами грузоподъемностью 75 т и выше и открытых крановых эстакад с кранами грузоподъемностью более 15 т, для высоких сооружений (трубы, здания башенного типа и т.п.), а также во всех случаях, когда расчетное сопротивление грунтов основания R εu = 1/6 — для остальных производственных зданий с мостовыми кранами и открытых крановых эстакад;
εu = 1/4 — для бескрановых зданий, а также производственных зданий с подвесным крановым оборудованием.
Форма эпюры контактных давлений под подошвой фундамента зависит от относительного эксцентриситета (рис. 5.25): при ε ε = 1/10, соотношение краевых давлений pmin/pmax = 0,25), при ε = 1/6 — треугольная с нулевой ординатой у менее загруженной грани подошвы, при ε > 1/6 — треугольная с нулевой ординатой в пределах подошвы, т.е. при этом происходит частичный отрыв подошвы.
В последнем случае максимальное краевое давление определяется по формуле
где b — ширина подошвы фундамента; l0 = l /2 – e — длина зоны отрыва подошвы (при ε = 1/4, l0 = 1,4).
Следует отметить, что при отрыве подошвы крен фундамента нелинейно зависит от момента.
Распределение давлений по подошве фундаментов, имеющих относительное заглубление λ = d/l > 1, рекомендуется находить с учетом бокового отпора грунта, расположенного выше подошвы фундамента. При этом допускается применять расчетную схему основания, характеризуемую коэффициентом постели (коэффициентом жесткости). В этом случае краевые давления под подошвой вычисляются по формуле
где id — крен заглубленного фундамента; ci — коэффициент неравномерного сжатия.
Пример 5.11. Определить размеры фундамента для здания гибкой конструктивной схемы без подвала, если вертикальная нагрузка на верхний обрез фундамента N = 10 МН, момент M = 8 МН·м, глубина заложения d = 2 м. Грунт — песок средней крупности со следующими характеристиками, полученными по испытаниям: е = 0,52; φII = 37°; cII = 4 кПа; γ = 19,2 кН/м 3 . Предельное значение относительного эксцентриситета εu = е/l = 1/6.
Решение. По табл. 5.13 R0 = 500 кПа. Предварительные размеры подошвы фундамента определим исходя из требуемой площади:
м 2 .
Принимаем b · l = 4,2 · 5,4 м ( A = 22,68 м 2 ).
Расчетное сопротивление грунта по формуле (5.29) R = 752 кПа. Максимальное давление под подошвой
кПа R = 900 кПа.
Эксцентриситет вертикальной нагрузки
м,
Таким образом, принятые размеры фундамента удовлетворяют условиям, ограничивающим краевое давление и относительный эксцентриситет нагрузки.
Сорочан Е.А. Основания, фундаменты и подземные сооружения
Источник
Предельное равновесие в точке и положение поверхностей скольжения. Расчетное сопротивление грунта.
|
Р
s R
Значит разрушение грунта происходит от действия сил t. Под действиями данных сил частицы грунта смещаются относительно своих контактов, зерна попадают в поровое пространство, происходит процесс уплотнения грунта с возникновением в некоторых областях поверхностей скольжения. (tпр)
t
|
j
s
Как же происходит разрушение грунта ?
одноосное s2 s2
сжатие
a aпр -?
поверхность
Вырежем из массива грунта призму
b=45-
Общее напряженное состояние грунта можно характеризовать кругом Мора.
2aпр =90 + j
| |
|
Ðb=45- — угол между
|
площадкой сдвига и
линией действия наибольших
При a = 90 о
| |
|
на площадку действует
главное нормальное
напряжение t= 0 — сдвиг —
b b
При Рпр — происходит выпор грунта из-под подошвы фундамента, т.е. развитие пластических деформаций в огромной области
При Р £ R считают по линейной зависимости (теория упругости).
При достижении интенсивности давления Ркр-1 в отдельных точках под подошвой, прежде всего под краями фундамента, возникают зоны предельного равновесия (пластических деформаций t).
b
Pkp-1 = f(j, c, g, h) – довольно малая величина.
В расчетах приняли, исходя из практики строительства, допускать давление на грунт, при котором зоны пластических деформаций под краями фундамента достигнут глубины ¼ b.
Отсюда понятие R – расчетное сопротивление грунта
Считать по этой формуле трудоемко, поэтому ее несколько изменили (в таком виде она имеется в СНП 2.02.01-83*, формула 7), введя условия совместности работы основания и сооружения.
d1=h1+h2 ; db £ 2м при В £ 20м ; db= 0 при В>20м
Приведенная глубина заложения фундамента; Глубина подвала
Какова же тогда будет предельная нагрузка?
Рпред – найдена для различных задач (Березанцев, Глушкевич, Соколовский и др.);
Рпред – зависит от тех же величин, что и R.
|
3 х — членная формула (пространственная задача)
q = goh — пригрузка ; с – сцепление
При Рпред происходит выпирание грунта, т.е. развитие пластических деформаций в огромной области.
|
1. Грунт в зонах сдвига не сжимается.
2. По всей зоне имеет место предельное равновесие.
Практически обычно решают 2-е задачи:
Задаются нагрузкой и из предельного состояния грунта в основании находят величину пригрузки q.
Задана пригрузка и, исходя из предельного состояния, находим интенсивность нагрузки.
Источник