Что такое банкетка фундамента

18.4. УСИЛЕНИЕ (УКРЕПЛЕНИЕ) ФУНДАМЕНТОВ

18.4.1. Защита фундаментов от выветривания

Это мероприятие выполняется при физическом и химическом выветривании материала фундаментов, когда процессами выветривания кладка затронута неглубоко и нет сквозных трещин в фундаментах. Обычно это бывает, если фундаменты выполнены из бутовой или кирпичной кладки, обладающей невысокой прочностью и водостойкостью. Химическое выветривание может происходить при недостаточной стойкости цемента или заполнителя против агрессивных свойств среды.

При восстановлении поверхности фундаментов применяют оштукатуривание цементным раствором (торкретирование) по подготовленной (зачищенной) боковой поверхности фундаментов или оштукатуривание по металлической сетке, укрепленной на боковой их поверхности. Если процессы выветривания захватили фундамент на всю толщу, необходимо либо зацементировать кладку, укрепив тем самым существующий фундамент, либо выполнить обойму, восстановив несущие функции фундамента.

Цементация фундамента выполняется путем бурения с поверхности и из первого или подвального этажа в кладке фундамента скважин и нагнетания в них цементного раствора. Скважины бурят перфораторами или электродрелью диаметром 20—30 мм на расстоянии 50 см одна от другой, на глубину примерно 2/3 толщины фундамента. В скважины вставляют трубки диаметром 20—25 мм, через которые нагнетают цементный раствор. Трубки в устьях скважин заделывают густым раствором на глубину 10 см. Давление нагнетания 0,2—0,6 МПа. После пробных нагнетаний следует откопать опытные участки, проверить результаты и уточнить технологию работ, состав работ и пр. [4, 10].

В тех случаях, когда из-за выветривания и разрушения кладки фундаментов образовались трещины в надфундаментной части здания или сооружения, простое заполнение открытых трещин цементным раствором может быть недостаточным. Тогда рекомендуется повысить прочность здания или сооружения другими конструктивными мероприятиями.

Читайте также:  Калькулятор расчета стоимости фундамента монолитного

18.4.2. Повышение прочности и уширение фундамента

При реконструкции производства или здания, когда существенно возрастают нагрузки на фундамент, а также когда в результате неравномерных осадок появляются трещины в здании и фундаменте, рекомендуется усилить фундамент, выполнением обойм из бетона или железобетона. В старом фундаменте, а иногда и в цокольной части стен устраивают штрабы, бурят шпуры, в которые устанавливают закладные детали (балки, арматуру), обеспечивающие совместную работу старых фундаментов и обойм. Кроме того, в обоймах устанавливают арматуру, рассчитанную на обеспечение прочности стен в продольном направлении. Этим способом достигается также развитие опорной площади фундаментов, т.е. снижается давление на основание, а следовательно, уменьшаются осадки здания.

Для обеспечения совместной работы обоймы и фундамента из рваного бутового камня на слабом цементном растворе обойму выполняют в траншеях. В отверстия, просверленные перфораторами или пробитые в старом фундаменте, вставляют стяжки. Сцепление бетона с бутовой кладкой обусловливается неровной боковой поверхностью кладки, очищенной от грунта, промытой и продутой сжатым воздухом (рис. 18.5).

На рис. 18.6 показано усиление бетонного или из гладкой каменной или кирпичной кладки фундамента с одновременным увеличением опорной площадки, также с выполнением обоймы. Размер шпонок по высоте принимается исходя из обеспечения передачи поперечных усилий от обоймы существующему фундаменту. Желательно выполнять обойму с применением расширяющегося цемента. При необходимости в обойму вставляется продольная арматура, например при наличии трещин в фундаменте, лишающих фундамент необходимой жесткости. Если требуется расширить фундамент с обжатием основания под полосами расширения или выправить фундамент и стену, то рекомендуется следующая технология (рис. 18.7): в траншеях устраивают из сборных блоков или из монолитного бетона банкетки на утрамбованной щебеночной подготовке; пробивают отверстия сквозь фундамент и штрабы вдоль фундамента; устанавливают в отверстия металлические балки; вдоль фундамента бетонируют железобетонные балки или устанавливают металлические; домкратами обжимают основание под банкетками и, если требуется, выравнивают фундамент и стену; между домкратами устраивают бетонное заполнение или подкладки; вынимают домкраты и омоноличивают конструкцию.

Читайте также:  Подходит ли пластиковая арматура для фундамента

Источник

Пример 2. Расчет фундаментной плиты на продавливание.

На фундаментную плиту на естественном основании опирается колонна, передающая нагрузку от здания. Требуется выполнить расчет фундаментной плиты на продавливание согласно п. 3.96 Пособия по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры к СНиП 2.03.01-84.

Толщина плиты 500 мм, расстояние от грани бетона до оси рабочей арматуры 45 мм, класс бетона В20 (Rbt = 8,16 кг/см² при коэффициенте условий работы 0,9), вертикальное усилие в основании колонны N = 360 т, сечение колонны 400х400 мм, расчетное сопротивление грунта основания R = 34 т/м².

Определим h₀ = 500 – 45 = 455 мм.

Площадь верхнего основания пирамиды продавливания равна площади колонны 0,4х0,4 м.

Определим размеры граней нижнего основания пирамиды продавливания (они одинаковые): 0,4 + 2∙0,455 = 1,31 м, площадь нижнего основания пирамиды равна 1,31∙1,31 = 1,72 м².

Согласно пособию, продавливающая сила равна силе N = 360 т за вычетом силы, приложенной к нижнему основанию пирамиды продавливания и сопротивляющейся продавливанию. В нашем случае такой силой служит расчетное сопротивление основания, равное R = 34 т/м². Зная площадь основания пирамиды, переведем расчетное сопротивление в сосредоточенную нагрузку: 34∙1,72 = 58 т. В итоге, мы можем определить продавливающую силу: F = 360 – 58 = 302 т.

Определим периметры оснований пирамиды:

4∙0,4 = 1,6 м – периметр меньшего основания;

4∙1,31 = 5,24 м – периметр большего основания.

Найдем среднеарифметическое значение периметров:

(1,6 + 5,24)/2 = 3,42 м.

Определим, чему равна правая часть уравнения (200):

1,0∙8,16∙10∙3,42∙0,455 = 126 т.

Проверим, выполняется ли условие (200):

F = 302 т > 126 т – условие не выполняется, фундаментная плита не проходит на продавливание.

Проверим, поможет ли нам установка поперечной арматуры в зоне продавливания. Зададимся поперечной арматурой диаметром 10 мм с шагом 150х150 мм и определим количество стержней, попадающих в зону продавливания (т.е. пересекающих грани пирамиды продавливания).

У нас получилось 72 стержня, суммарной площадью Аsw = 72∙0,785 = 56,52 см².

Поперечная арматура на продавливание должна быть либо в виде замкнутых вязаных хомутов, либо в виде каркасов, сваренных контактной сваркой (ручная дуговая не допускается).

Теперь мы можем проверить условие (201), учитывающее поперечную арматуру при продавливании.

Найдем Fsw (здесь 175 МПа = 1750 кг/см² — предельное напряжение в поперечных стержнях):

Fsw = 1750∙56,52 = 98910 кг = 98,91 т.

При этом должно удовлетворяться условие Fsw = 98.91 т > 0.5Fb = 0.5∙126 = 63 т (условие выполняется).

Найдем правую часть условия (201):

126 + 0,8∙98,91 = 205 т.

Проверим условие (201):

F = 302 т > 205 т – условие не выполняется, фундаментная плита с поперечной арматурой не выдерживает продавливание.

Проверим также условие F 2Fb = 2∙126 = 252 – условие не выполняется, в принципе, при таком соотношении сил армирование помочь не может.

В таком случае следует локально увеличить толщину плиты – сделать банкетку в районе колонны и пересчитать плиту с новой толщиной.

Принимаем толщину банкетки 300 мм, тогда общая толщина плиты в месте продавливания будет равна 800 мм, а h₀ = 755 мм. Важно определить размеры банкетки в плане так, чтобы пирамида продавливания находилась полностью внутри банкетки. Мы примем размеры банкетки 1,2х1,2 м, тогда она полностью покроет пирамиду продавливания.

Повторим расчет на продавливание без поперечной арматуры с новыми данными.

Площадь верхнего основания пирамиды продавливания равна площади колонны 0,4х0,4 м.

Определим размеры граней нижнего основания пирамиды продавливания (они одинаковые): 0,4 + 2∙0,755 = 1,91 м, площадь нижнего основания пирамиды равна 1,91∙1,91 = 3,65 м².

Согласно пособию, продавливающая сила равна силе N = 360 т за вычетом силы, приложенной к нижнему основанию пирамиды продавливания и сопротивляющейся продавливанию. В нашем случае такой силой служит расчетное сопротивление основания, равное R = 34 т/м². Зная площадь основания пирамиды, переведем расчетное сопротивление в сосредоточенную нагрузку: 34∙3,65 = 124 т. В итоге, мы можем определить продавливающую силу: F = 360 – 124 = 236 т.

Определим периметры оснований пирамиды:

4∙0,4 = 1,6 м – периметр меньшего основания;

4∙1,91 = 7,64 м – периметр большего основания.

Найдем среднеарифметическое значение периметров:

(1,6 + 7,64)/2 = 4,62 м.

Определим, чему равна правая часть уравнения (200):

1,0∙8,16∙10∙4,62∙0,755 = 284 т.

Проверим, выполняется ли условие (200):

F = 236 т Комментарии

О чем? О банкетке, выпирающей вниз вы не почитаете нигде, т.к. если достаточно такой банкетки, то зачем плита вокруг?

О расчете столбчатого фундамента — в пособии по расчету столбчатых фундаментах есть примеры расчета.

Сваи по тому же принципу считаются — по площади опирания. Но в сваях есть еще боковое трение, добавляющее несущую способность.

Пол и фундаментная плита — слишком разные вещи. По стоимости в том числе.

Да, не имеет смысла.

Добрый день, Ирина.

Необходимо собрать нагрузки на перекрытие и основание лифтовой шахты для обустройства помещения под шахтой.

Дано: Пятиэтажный дом с подвальным помещением 50х годов постройки. В проеме между лестничными маршами (тип Л-2) встроена сетчатая шахта лифта. Лифт имеет кирпичный приямок (190х140 см) с установленными пружинными амортизаторами, приямок опирается на прямоугольное основание из пустотелого двойного кирпича (толщина стенок 25 см). Основание связано по периметру стальным 65 уголком, внутри засыпка из грунта и строительного мусора. По грунту отлита бетонная плита (дно приямка).

Задача: усилить основание приямка и сделать в нем подсобное помещение.

Мои рассуждения по этому вопросу:
Из того что нашел по нормативной документации, это ГОСТ Р 53780-2010:

«5.2.5.6 При наличии под приямком лифта пространства (помещения), доступного для людей, основание приямка должно быть рассчитано на восприятие нагрузки не менее 5000 Н/м2»

«б) под буфером противовеса или под зоной движения уравновешивающе го устройства должна быть установлена опора, которая доходит до монолитного основания и способна выдержать удар противовеса или уравновешивающе го устройства, падающего с наибольшей возможной высоты.»

Предположим вес лифта 1000 кг, плюс противовес 1500 кг, плюс направляющие и сам приямок пусть 500 кг. На случай аварийного обрыва противовеса с максимальной высоты (15 метров) имеем воздействие на опору 220500 Дж. Возможно в лифте есть ловители, но вопрос в их работоспособнос ти, поэтому считаю по максимуму.

Достаточно ли будет усилить дно приямка двумя двутавровыми балками 16М, плюс усилить периметр 100 уголком?

Источник

Фундаментная плита с обратной банкеткой

Страница 1 из 2 1 2 >

Интересные дела. По одному объекту пытаемся работать по схеме с привлечением постороннего расчетчика. Т.е расчетчик (работала в Москве все дела. ) делает расчет по этому расчету мы делаем КЖ.

4-х этажное здание с подвалом. По подвалу ограждающие стены выполнены в монолите. Колонны монолитные 400х400 перекрытия плоские (в нескольких местах есть «скрытые балки»). Шаг колонн 6 метров. Нагрузки как на общественное здание).

Из условий продавливания расчетчик называет толщину фундаментной плиты 700 мм. Директор не согласен — как обосновать заказичку такую толщину для такого маленького здания? Суть вопроса такова что предложили расчетчику сделать 500, а в нужном месте на продавливание увеличить высоту плиты «вниз» (т.е. заглубить в землю до 700 мм).
Расчетчик приходит и начинает объяснять что делать углубления в плите нельзя, т.е. нижняя плоскость плиты должна быть ровной. Обосновывает это иной схемой работы такой плиты т.е. часть с углублением это уже столбчатый фундамент и «верхнняя» (т.е. более тонкая часть плиты) давит на нее дополнительно. К тому же он почему то утверждает что плиту ни в коем случае нельзя делать на насыпных грунтах (в одном месте по плану нужно для выравнивания рельефа насыпать грунт (уплотнить — понятно)).

В общем хочу услышать комментарии — почему нельзя делать утолщения плиты «вниз».(см рисунок)

PS. Расчетчик считает в SCAD. Если кому интересно могу выложить схему.

Источник

Фундаментная плита с обратной банкеткой

Страница 1 из 2 1 2 >

Интересные дела. По одному объекту пытаемся работать по схеме с привлечением постороннего расчетчика. Т.е расчетчик (работала в Москве все дела. ) делает расчет по этому расчету мы делаем КЖ.

4-х этажное здание с подвалом. По подвалу ограждающие стены выполнены в монолите. Колонны монолитные 400х400 перекрытия плоские (в нескольких местах есть «скрытые балки»). Шаг колонн 6 метров. Нагрузки как на общественное здание).

Из условий продавливания расчетчик называет толщину фундаментной плиты 700 мм. Директор не согласен — как обосновать заказичку такую толщину для такого маленького здания? Суть вопроса такова что предложили расчетчику сделать 500, а в нужном месте на продавливание увеличить высоту плиты «вниз» (т.е. заглубить в землю до 700 мм).
Расчетчик приходит и начинает объяснять что делать углубления в плите нельзя, т.е. нижняя плоскость плиты должна быть ровной. Обосновывает это иной схемой работы такой плиты т.е. часть с углублением это уже столбчатый фундамент и «верхнняя» (т.е. более тонкая часть плиты) давит на нее дополнительно. К тому же он почему то утверждает что плиту ни в коем случае нельзя делать на насыпных грунтах (в одном месте по плану нужно для выравнивания рельефа насыпать грунт (уплотнить — понятно)).

В общем хочу услышать комментарии — почему нельзя делать утолщения плиты «вниз».(см рисунок)

PS. Расчетчик считает в SCAD. Если кому интересно могу выложить схему.

Источник

Оцените статью