Что такое лежневые фундаменты

Что такое лежневые фундаменты

Василий Боровицкий, заместитель главного инженера ОАО «Тюменьэнерго» г. Тюмень

Для северных регионов России характерны большая обводненность и заболоченность местности, пучинистые грунты и грунты с большими удельными сопротивлениями, резкие годовые и суточные перепады температур. Специалисты «Тюменьэнерго» вынуждены преодолевать эти неблагоприятные обстоятельства, находя и отрабатывая решения и технологии, которые позволят гарантировать надежную работу электрических сетей.
Василий Геннадьевич Боровицкий рассказывает о мерах, которые помогают сегодня тюменским энергетикам справиться с одной из самых острых проблем северных регионов – с разрушением железобетонных фундаментов опор ВЛ.

Массовое строительство ВЛ в 1980–1990 годы в малоизученном в тот момент северном регионе, когда в работу вводилось зачастую более тысячи километров линий в год, создало ряд проблем их эксплуатации из-за неполного учета геологических и климатических условий территории при проектировании и сооружении ВЛ. Эти проблемы приходится решать специалистам компании «Тюменьэнерго», в хозяйстве которой протяженность воздушных линий напряжением 35–220 кВ составляет более 17 тыс. км по трассе и около 24,5 тыс. км по цепям. В 1992–2000 гг. институт «Энергосетьпроект» (Москва) проводил научно-исследовательские работы, направленные на выявление основных причин аварийного состояния ВЛ в районах Ноябрьских электрических сетей «Тюменьэнерго». Результаты исследований показали, что аварийное состояние опор ВЛ вызвано комплексным воздействием различных природных факторов (обводнением грунтов, деградацией мерзлоты в месте установки опор, морозным пучением, ветровыми нагрузками на элементы конструкций опор) и эксплуатационных нагрузок, как статических (от веса проводов, горизонтального тяжения на анкерно-угловых опорах), так и динамических, возникающих при ветровых нагрузках и приводящих к низкочастотным колебаниям системы «провод – гирлянда изоляторов – конструкция опоры – свайный фундамент».
Наиболее серьезный ущерб ВЛ тюменского региона наносит повреждение фундаментов опор из-за морозного пучения, а также разрушение бетона свай из-за резких перепадов температур и воздействия агрессивной среды в местах разлива нефти, обводнения с примесями химических компонентов, используемых в процессе нефтедобычи.

Читайте также:  Заливаем столбы для фундамента своими руками

РАЗРУШЕНИЕ БЕТОНА СВАЙ

Бетон фундаментных свай разрушается под воздействием окружающей среды, например, в местах разлива нефти, обводнения с примесями химических компонентов и т.п., влагонасыщенной почвы и резких перепадов температур.

Фото 1. Ремонт фундаментов опор

Для ремонта, который проводится по методике, предложенной институтом «Уралэнергосетьпроект», применяется труба диаметром 720 мм с толщиной стенки 8 мм, разрезанная вдоль пополам. Длина трубы определяется длиной разрушенной части плюс 0,5 м. Перед производством работ поверхность сваи очищается от земли, половинки труб соединяются с помощью болтового или сварного соединения и планок. Труба бетонируется, для чего используется бетон марки М400, смесь уплотняется вибрированием. Наружную поверхность трубы покрывают битумом в два слоя.
Многолетнее применение данного метода ремонта показывает его эффективность и небольшую стоимость.

МОРОЗНОЕ ПУЧЕНИЕ СВАЙНЫХ ФУНДАМЕНТОВ

Для погружения свай в грунт до заданной глубины применяется буроопускной способ погружения с использованием лидерных скважин и дозабивкой последнего метра сваи в ненарушенный грунт. При этом между стенкой скважины и поверхностью сваи возникает зона неуплотненного грунта. Под воздействием смерзания-оттаивания грунт на глубину его промерзания уплотняется в зоне от границы сезонного промерзания и выше. По мере увеличения площади соприкосновения уплотненных грунтов в зоне промерзания, усиливается действие касательных сил морозного пучения, и, как показывает опыт эксплуатации, через 5–6 лет в пучинистых грунтах начинается выход сваи – до 5 см за сезон (рис. 1).

При выдавливании сваи из ненарушенного грунта (из зоны дозабивки) величина ее ежегодного выхода растет за счет сил, приложенных к торцу сваи и возникающих при расширении замерзающей жидкости в водонасыщенных грунтах, которые заполняют пространство лидерной скважины. Величина этих сил во много раз превышает вертикальную составляющую касательных сил морозного пучения и может превышать 50 тс на сваю. В результате ежегодный выход свай увеличивается до 20–25 см и более, фундамент теряет несущую способность, что может привести к падению опор под воздействием ветровых нагрузок.
На протяжении целого ряда лет сотрудники «Тюменьэнерго», институтов «Энергосетьпроект» (Москва) и «Уралэнергосетьпроект» (Екатеринбург) совместно работают над проблемой морозного пучения фундаментов опор, и в настоящее время применяются опробованные методы и технологии для ее решения.

Обваловка грунтом фундаментов опор

Фото 2. Обваловка грунтом фундаментов опор

Метод обваловки фундаментов опор на высоту, исключающую оттаивание зоны сезонного промерзания грунта, применяется на ВЛ, находящихся вблизи карьеров, в которых ведется разработка и намыв грунта.

Установка термостабилизаторов – сезонно-охлаждающих устройств (СОУ) вблизи свай фундамента

Фото 3. Установка термостабилизаторов – сезонно-охлаждающих устройств (СОУ) вблизи свай фундамента

Стабилизация температурного режима вечномерзлых грунтов обеспечивает устойчивость грунтовых и свайных оснований объектов. Использование СОУ, в которых в качестве хладагента используется газообразный аммиак, позволяет остановить процесс морозного пучения свайных фундаментов, однако акты вандализма ограничивают применение этой технологии на неподконтрольных территориях в отсутствие надзора.

Усиление фундаментов крестовыми сваями

Фото 4. Усиление фундаментов крестовыми сваями

Технология, разработанная «Энергосетьпроектом» (Москва), используется в сезоннопромерзающих грунтах и заключается в следующем:

  • выбуривается лидерная скважина на глубину три метра;
  • свая опускается в лидерную скважину и забивается до отметки плиты сваи 1 метр над уровнем поверхности;
  • производится сборка тяги анкерного устройства (допускается применение звеньев промежуточных регулируемых типа ПРР 30-1 с разрушающей нагрузкой 30,0 тс);
  • на плиту сваи устанавливается кондуктор-удлинитель, внутрь которого пропускается тяга анкерного устройства, свая дозабивается на глубину три метра в ненарушенный грунт (плита сваи находится на дне пробуренной скважины);
  • после отсоединения кондуктора-удлинителя монтируется узел крепления анкерного устройства на фундаменте укрепляемой опоры и соединяется с тягой анкерного устройства через регулируемое устройство;
  • после регулировки устройства в сборе лидерная скважина засыпается выбуренным грунтом.

Опыт эксплуатации показывает, что данный метод эффективен для укрепления свай фундаментов при их выпучивании на высоту до 1,5 метров и прекращает их дальнейшее пучение.

Применение винтовых свай

Фото 5. Применение винтовых свай

Винтовые сваи, выпускаемые ООО «Завод винтовых свай» (г. Алапаевск), заслуживают внимания после устранения замечаний по их доработке – герметизации. В «Тюменьэнерго» планируется при реконструкции ВЛ в качестве эксперимента выполнить единичные фундаменты с применением винтовых свай для дальнейшего наблюдения и определения их эффективности.

Сооружение поверхностных (лежневых) фундаментов и перестановка опор

Фото 6. Сооружение поверхностных (лежневых) фундаментов и перестановка опор

В настоящее время существуют проекты и технические решения для поверхностных фундаментов всех используемых типов опор и оттяжек, разработанные институтом «Уралэнергосетьпроект» (г. Екатеринбург).
Поверхностные фундаменты применяются на местности с ровным рельефом (без косогоров, склонов и т.п.). Монтаж такого фундамента не требует применения сваебоя и может быть выполнен даже в летнее время, но требует большего количества материалов по сравнению с монтажом типовых фундаментов.
В настоящее время в энергокомпании действует долгосрочная программа перевода фундаментов опор воздушных линий электропередачи, подверженных морозному пучению, на поверхностный тип установки на лежнях.

Экстремальные климатические условия заставляют тюменских энергетиков пересматривать традиционные методы эксплуатации и обслуживания воздушных линий. В ОАО «Тюменьэнерго» постоянно ведутся экспериментальные исследования инновационных технологий, испытания современной техники и оборудования, опробование новых методов работы, чтобы в итоге обеспечить стабильное энергоснабжение потребителей.

© ЗАО «Новости Электротехники»
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Источник

Сооружение сборных фундаментов

На строительстве воздушных линий электропередач наибольшее распространение получили сборные железобетонные фундаменты, монтируемые в котлованах из готовых деталей заводского изготовления либо устанавливаемые на поверхности земли.

«Мокрое» бетонирование весьма трудоемко, так как связано с доставкой на трассу больших количеств гравия, песка, цемента и воды, приготовлением бетона с помощью бетономешалок, устройством опалубок, укладкой бетона с его уплотнением вибраторами и ожиданием, пока бетон наберет нужную прочность. Поэтому монолитные бетонные (железобетонные) фундаменты применяются лишь для особо тяжелых и сложных опор, например для переходов воздушных линий электропередач через водные преграды.

Сборные фундаменты, устанавливаемые в котлованах, вырытых в грунте, состоят в основном из железобетонных подножников, имеющих широкое основание, опирающееся на грунт (дно котлована) ниже уровня промерзания, что обычно предохраняет от сил пучения. Дополнительными элементами могут, при необходимости, служить подземные ригели и пригрузочные плиты, закрепляемые на подножнике до засыпки его грунтом. Такие элементы утяжеляют фундаменты, увеличивают сцепление с грунтом и, таким образом, увеличивают их устойчивость. В многолетнемерзлых грунтах подножники применяют там, где их нижняя плита (основание) располагается в основном грунте, т. е. ниже границы деятельного оттаивающего слоя.

Особый интерес, особенно для применения в зимний период и для многолетнемерзлых грунтов с большой глубиной сезонного оттаивания, а также для применения на курумах (каменных осыпях) и в слабых грунтах, представляют собой поверхностные фундаменты. В отличие от других конструкций поверхностные фундаменты имеют столь большую площадь основания, составляемого из горизонтально уложенных свай или плит, что их можно устанавливать на самые различные грунты, в том числе даже непосредственно на торф. Правда, в этом случае фундамент будет по существу не «поверхностным», а, скорее, «плавающим», так как погрузится немного ниже поверхности. Однако осадка прекратится, и фундамент будет служить надежно.

Проверка фундаментов лежневого типа из свай на воздушной линии электропередач 110 кВ в районе г. Надыма через 3 года эксплуатации показала, что конструкции находились в хорошем состоянии и оставались надежными. Осадки фундаментов составили в первый год 25-30 см и далее не возрастали. Крены были обнаружены там, где фундаменты находились на разных основаниях, например один край фундамента уложен на песке, а другой — на торфе.

Во время урагана в районе г. Новый Уренгой в 1985 г., когда были случаи разрушения свайных фундаментов с выдергиванием свай, погруженных на глубину 6 м, повреждений поверхностных фундаментов не было.

На Крайнем Севере поверхностные фундаменты широко применяются при ремонтах и аварийно-восстановительных работах на воздушных линиях электропередач. Основной их недостаток — большой расход материалов. Ведь они должны быть гораздо тяжелее, чем фундаменты, расположенные в грунте, где устойчивость фундамента определяется суммарной тяжестью его и связанного с ним грунта. В поверхностный фундамент каждой промежуточной металлической опоры воздушной линии электропередач 110 кВ нужно уложить от 18 до 23 т свай, что по крайней мере втрое превышает расход железобетона на обычные свайные фундаменты.

Однако сооружение лежневых фундаментов незначительно дороже забивных, упрощается их проектирование — не нужны подробные геологические изыскания — и монтаж с помощью небольшого грузоподъемного механизма, отпадает необходимость в доставке на трассу тяжелых и дорогих специальных машин, необходимых для погружения свай. К тому же расход материалов и стоимость сооружения можно резко снизить за счет применения усиливающих элементов в виде вмораживаемых анкеров либо сборкой поверхностного фундамента не из свай, а из плит с вертикальными стенками, образующими ячейки, которые засыпаются дополнительным грунтом для пригрузки.

Источник

Железобетонные лежни

Лежни в строительстве – это деревянные или железобетонные изделия с большим поперечным сечением, располагаемые горизонтально и служащие опорой для различных конструкций. Их основное назначение – распределение точечных вертикальных нагрузок на большую площадь опирания. Лежни используют при обустройстве фундамента, пола, потолка здания, стропильной системы. Если в частном строительстве обычно применяют деревянные изделия (бревна, брусья), то при сооружении многоэтажных жилых зданий, объектов промышленного и инженерного назначения используются их железобетонные аналоги.

Особенности материалов, используемых для изготовления лежней

Лежни, независимо от области их применения, изготавливаются из тяжелых бетонов, соответствующих ГОСТу 26633-2015. При производстве этих ЖБИ применяют бетонные смеси со следующими характеристиками:

  • прочность – не ниже В30;
  • водостойкость – W6;
  • морозостойкость – F200-300.

Если ЖБИ планируется эксплуатировать в агрессивных средах, то для их изготовления используют сульфатостойкие бетоны. Но даже в обычные бетонные смеси добавляют пластифицирующие и другие добавки, которые придают устойчивость изделиям к воздействию масел и других агрессивных веществ.

Для армирования изделий применяют сварные или вязаные каркасы из прочных арматурных сталей, способные выдерживать значительные постоянные и ударные нагрузки, благодаря чему ЖБИ могут использоваться в сейсмоопасных регионах.

Классификация лежней по назначению

Различают лежни марки Л, применяемые в мостостроении, и марки ЛЖ, рассчитанные на использование в энергетическом и промышленном строительстве.

Железобетонные лежни Л – характеристики и области применения

ЖБИ данного типа, выпускаемые в соответствии с серией 3.503.1-96, имеют прямоугольное или тавровое поперечное сечение. Применяются в качестве фундаментной опоры в местах сопряжения мостовых конструкций и путепроводов с грунтом. Также они могут использоваться для строительства пешеходных переходов через автомобильные и железные дороги.

Изделия этой марки могут иметь с одной стороны выпуски арматуры, позволяющие прочно крепить лежни к другим элементам эстакад или мостов. На лежни укладывают переходные плиты, поверх которых настилают асфальтобетон.

Изделия ЛЖ – конструкционные особенности и области применения

ЖБИ марки ЛЖ – унифицированные изделия, применяемые при устройстве фундаментов блочных трансформаторных подстанций напряжением 35-500 кВ. Эта продукция, соответствующая серии 3.407-157.1, имеет Т-образную форму поперечного сечения. Высота буквы «Т» – 500 мм, ширина пяты – 400 мм.

Широкая часть тавра укладывается на грунт, а на узкую монтируют плиты, служащие фундаментом для установки силовых трансформаторов и другого энергетического оборудования. Изделия создают между землей и плитами воздушную прослойку, которая предотвращает появление конденсата на поверхности плит и повышает электробезопасность оборудования. Еще одна функция ЖБИ марки ЛЖ – поглощение вибраций, характерных для работы мощных электроустановок.

Преимущества электротехнических лежней ЛЖ:

  • высокая прочность благодаря использованию при производстве тяжелого бетона с характеристиками, которые соответствуют запланированным условиям эксплуатации;
  • стойкость к вибрациям;
  • устойчивость к образованию и развитию очагов любых видов коррозии.

Для энергооборудования с различными размерами подбирают ЖБИ подходящей длины, которые обеспечивают устойчивое опирание оборудования и эффективное распределение вертикальных нагрузок на основание. Электротехнические изделия ЛЖ также используются на производственных предприятиях для устройства прочных оснований под тяжелое промышленное оборудование.

Источник

Оцените статью