Давление по подошве гибкого фундамента

Лекции по Основаниям и фундаментам. DOC / Проектирование гибких фун-ов

Проектирование гибких фундаментов

При расчете жестких фундаментов была принята линейная зависимость распределений напряжений под подошвой фундамента. При расчете фундаментов конечной жесткости (гибких фундаментов- балок и плит) условная линейная эпюра распределения напряжений под подошвой гибкого фундамента не приемлема.

В этом случае необходимо учитывать M и Q, возникающие в самой конструкции фундамента, вследствие действия неравномерных контактных реактивных напряжений по подошве фундамента. Не учет возникающих усилий может привести к неправильному выбору сечения фундамента или % его армирования.

Поэтому необходимо решать задачу совместной работы фундаментной конструкции и сжимаемого основания.

Какие же фундаменты считать гибкими?

Гибкие фундаменты — это те, деформации изгиба которых того же порядка, что и осадки этого же фундамента

S(см) ≈ f(см); ∆ S – осадка фундамента (деформация основания)

f – деформация изгиба фундамента

Таким образом, при расчете гибких фундаментов необходимо одновременно учитывать и деформации фундамента и его осадки.

конструкция грунт

При расчете ленточных фундаментов, загруженных неравномерно сосредоточенными силами — необходимо учитывать изгиб в продольном направлении.

Вследствие изгиба фундамента конечной жесткости давление на грунт увеличивается в местах передачи фундаменту сосредоточенных сил и уменьшается в промежутках между этими силами.

Единого метода расчета гибких фундаментов нет, а существует несколько способов.

h

Критерий, определяющий состояние фундамента

> — абсолютно жесткие фундаменты

(Рассматриваются при опирании конструкции стены. Расчитываются гибкие конструкции типа рандбалок, ж/б поясов).

Бесконечно простирающаяся полоса и нагрузка приложена вдоль всей полосы.

Для расчета необходимо рассматривать единичный элемент.

Рассчитываются гибкие ленточные конструкции — фундамент под стены.

(ж/б фундамент под колонну)

Расчет балок по методу

местных упругих деформаций ( гипотеза Винклера).

; где

Px – интенсивность давления, передающегося на основание (реактивный отпор грунта в т. Х)

Zx – величина перемещения в т. Х (зависит от жесткости балок, характера распределения нагрузки, размеров балки и деформируемости основания

Впервые этот метод был применён при расчете шпал под ж/дор., тогда считали, что Сz = f (грунта), но потом выяснилось, что Сz = f (грунта и ширины подошвы фундамента)

Px =; Сz =; Zx = см

Из сопромата известно уравнение, описывающее изгиб балки:

; ;

Значение Рх заменяем исходной формулой:

Решая это уравнение мы найдем Zx :

; А1, А2, А3, А4 — произвольные постоянные, определяемые из

В конечном итоге находим Сz и Рх , а следовательно Мх и Qx .

Решение этой задачи во многих случаях приведено в табличной форме в зависимости от конструкции фундаментов (Справочник проектировщика).

;

Расчет балок по методу общих упругих деформаций.

(Гипотеза упругого полупространства)

; где Г — гибкость балки;

l — полудлина балки;

h – высота балки;

Е – модуль упругости материала балки;

Е0 – модуль общей деформации грунта.

Г 10 — жёсткая балка (метод Горбунова-Посадова)

Г>10 — гибкая балка

Часто при расчете гибких фундаментов (особенно если жесткость балки применима)- переходят к решению задач по методу Жемочкина Б.Н. (Исследование приемов строительной механики для решения статически неопределимых систем).

Метод Жемочника для расчета фундаментных балок

на упругом основании.

В основу метода положены следующие допущения:

Действительная криволинейная эпюра

распределения давлений под подошвой

балки заменяется ступенчатой

Распределение давлений на ширине балки

также принимаются равномерным.

Между балкой и сжимаемым основанием предполагаются жесткие шарниры опирающиеся стержни, воспринимающие усилия от балки и равномерно распределяющие это усилие на основание.

4. Условие совместимости работы балки и основания и удовлетворяются равенством прогиба балки и осадки основания в месте закрепления опорного стержня yi=Si .

Этот метод является универсальным и позволяет решать любые задачи с любой степенью сложности.

Составляется система канонических уравнений (строительная механика):

Задача решается смешанным методом.

— единичное перемещение по направлению «к» связи от воздействия «i» связи

— единичное перемещение, вызванное осадкой основания

— единичное перемещение, вызванное прогибом балки

; -находятся обычно по таблицам

Решив систему уравнений и найдя Xi, определяют величины реактивных давлений Рi, соответствующих ширине принятых участков ступенчатой эпюры (см. допущение № 1):

Затем с использованием метода сечений строят эпюры изгибающих моментов M, а по ним окончательно определяют сечение балки и ее армирование

Источник

Лекция 21. Проектирование гибких фундаментов

Проектирование гибких фундаментов

При расчете жестких фундаментов была принята линейная зависимость распределений напряжений под подошвой фундамента. При расчете фундаментов конечной жесткости (гибких фундаментов — балок и плит) условная линейная эпюра распределения напряжений под подошвой гибкого фундамента не приемлема.

В этом случае необходимо учитывать M и Q, возникающие в самой конструкции фундамента, вследствие действия неравномерных контактных реактивных напряжений по подошве фундамента. Не учет возникающих усилий может привести к неправильному выбору сечения фундамента или % его армирования.

Поэтому необходимо решать задачу совместной работы фундаментной конструкции и сжимаемого основания.

Какие же фундаменты считать гибкими?

Гибкие фундаменты — это те, деформации изгиба которых того же порядка, что и осадки этого же фундамента

S(см) ≈ f(см); ∆ S – осадка фундамента (деформация основания)

f – деформация изгиба фундамента

Таким образом, при расчете гибких фундаментов необходимо одновременно учитывать и деформации фундамента и его осадки.

конструкция грунт

При расчете ленточных фундаментов, загруженных неравномерно сосредоточенными силами — необходимо учитывать изгиб в продольном направлении.

Вследствие изгиба фундамента конечной жесткости давление на грунт увеличивается в местах передачи фундаменту сосредоточенных сил и уменьшается в промежутках между этими силами.

Единого метода расчета гибких фундаментов нет, а существует несколько способов.

Критерий, определяющий состояние фундамента

h > — абсолютно жесткие фундаменты

h 10 — жёсткая балка (метод Горбунова-Посадова)

Г>10 — гибкая балка

Часто при расчете гибких фундаментов (особенно если жесткость балки применима)- переходят к решению задач по методу (Исследование приемов строительной механики для решения статически неопределимых систем).

Метод Жемочника для расчета фундаментных балок

на упругом основании.

В основу метода положены следующие допущения:

1. Действительная криволинейная эпюра

распределения давлений под подошвой

балки заменяется ступенчатой

Распределение давлений на ширине балки

также принимаются равномерным.

2. Между балкой и сжимаемым основанием предполагаются жесткие шарниры опирающиеся стержни, воспринимающие усилия от балки и равномерно распределяющие это усилие на основание.

4. Условие совместимости работы балки и основания и удовлетворяются равенством прогиба балки и осадки основания в месте закрепления опорного стержня yi=Si.

Этот метод является универсальным и позволяет решать любые задачи с любой степенью сложности.

Задача решается смешанным методом.

— единичное перемещение по направлению «к» связи от воздействия «i» связи

— единичное перемещение, вызванное осадкой основания

— единичное перемещение, вызванное прогибом балки

; — находятся обычно по таблицам

Решив систему уравнений и найдя Xi, определяют величины реактивных давлений Рi, соответствующих ширине принятых участков ступенчатой эпюры (см. допущение № 1):

Затем с использованием метода сечений строят эпюры изгибающих моментов M, а по ним окончательно определяют сечение балки и ее армирование

Источник

Читайте также:  Отметка подошвы фундамента что это такое
Оцените статью