- Теплотехнический расчет с примером
- Необходимые нормативные документы
- Рассчитываемые параметры
- Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки
- Исходные данные
- Расчет
- Влияние воздушной прослойки
- Теплотехнический расчет конструкций: что это такое и как проводится
- Задачи проведения процедуры
- Теплотехнический расчет – что это
- Требования по теплотехническому расчету помещения и сопутствующая документация
- Как делать теплотехнический расчет стен дома – основные параметры
- Варианты теплового расчета ограждающих конструкций
- Теплорасчет по площади помещений
- Теплорасчет ограждающих конструкций по объему здания
Теплотехнический расчет с примером
Давным-давно здания и сооружения строились, не задумываясь о том, какими теплопроводными качествами обладают ограждающие конструкции. Другими словами, стены делались просто толстыми. И если вам когда-нибудь случалось быть в старых купеческих домах, то вы могли заметить, что наружные стены этих домов выполнены из керамического кирпича, толщина которых составляет порядка 1,5 метров. Такая толщина кирпичной стены обеспечивала и обеспечивает до сих пор вполне комфортное пребывание людей в этих домах даже в самые лютые морозы.
В настоящее же время все изменилось. И сейчас экономически не выгодно делать стены такими толстыми. Поэтому были придуманы материалы, которые могут ее уменьшить. Одни из них: утеплители и газосиликатные блоки. Благодаря этим материалам, например, толщина кирпичной кладки может быть снижена до 250 мм.
Теперь стены и перекрытия чаще всего делают 2-х или 3-х слойными, одним слоем из которых является материал с хорошими теплоизоляционными свойствами. А для того, чтобы определить оптимальную толщину этого материала, проводится теплотехнический расчет и определяется точка росы.
Как производится расчет по определению точки росы вы можете ознакомиться на следующей странице. Здесь же будет рассмотрен теплотехнический расчет на примере.
Необходимые нормативные документы
Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:
- СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Актуализированная редакция от 2012 года [1].
- СНиП 23-01-99* (СП 131.13330.2012). «Строительная климатология». Актуализированная редакция от 2012 года [2].
- СП 23-101-2004. «Проектирование тепловой защиты зданий» [3].
- ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). «Здания жилые и общественные. Параметры микроклимата в помещениях» [4].
- Пособие. Е.Г. Малявина «Теплопотери здания. Справочное пособие» [5].
Скачать СНиПы и СП вы можете здесь, ГОСТ — здесь, а Пособие — здесь.
Рассчитываемые параметры
В процессе выполнения теплотехнического расчета определяют:
- теплотехнические характеристики строительных материалов ограждающих конструкций;
- приведённое сопротивление теплопередачи;
- соответствие этого приведённого сопротивления нормативному значению.
Дальше будут приведен пример теплотехнического расчета без воздушной прослойки.
Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки
Исходные данные
1. Климат местности и микроклимат помещения
Район строительства: г. Нижний Новгород.
Назначение здания: жилое .
Расчетная относительная влажность внутреннего воздуха из условия не выпадения конденсата на внутренних поверхностях наружных ограждений равна — 55% (СНиП 23-02-2003 п.4.3. табл.1 для нормального влажностного режима).
Оптимальная температура воздуха в жилой комнате в холодный период года tint= 20°С (ГОСТ 30494-96 табл.1).
Расчетная температура наружного воздуха text, определяемая по температуре наиболее холодной пятидневки обеспеченностью 0,92 = -31°С (СНиП 23-01-99 табл. 1 столбец 5);
Продолжительность отопительного периода со средней суточной температурой наружного воздуха 8°С равна zht = 215 сут (СНиП 23-01-99 табл. 1 столбец 11);
Средняя температура наружного воздуха за отопительный период tht = -4,1°С (СНиП 23-01-99 табл. 1 столбец 12).
2. Конструкция стены
Стена состоит из следующих слоев:
- Кирпич декоративный (бессер) толщиной 90 мм;
- утеплитель (минераловатная плита), на рисунке его толщина обозначена знаком «Х», так как она будет найдена в процессе расчета;
- силикатный кирпич толщиной 250 мм;
- штукатурка (сложный раствор), дополнительный слой для получения более объективной картины, так как его влияние минимально, но есть.
3. Теплофизические характеристики материалов
Значения характеристик материалов сведены в таблицу.
Примечание (*): Данные характеристики можно также найти у производителей теплоизоляционных материалов.
Расчет
4. Определение толщины утеплителя
Для расчета толщины теплоизоляционного слоя необходимо определить сопротивление теплопередачи ограждающей конструкции исходя из требований санитарных норм и энергосбережения.
4.1. Определение нормы тепловой защиты по условию энергосбережения
Определение градусо-суток отопительного периода по п.5.3 СНиП 23-02-2003:
Примечание: также градусо-сутки имеют обозначение — ГСОП.
Нормативное значение приведенного сопротивления теплопередаче следует принимать не менее нормируемых значений, определяемых по СНИП 23-02-2003 (табл.4) в зависимости от градусо-суток района строительства:
Rreq= a×Dd + b = 0,00035 × 5182 + 1,4 = 3,214м 2 × °С/Вт ,
где: Dd — градусо-сутки отопительного периода в Нижнем Новгороде,
a и b — коэффициенты, принимаемые по таблице 4 (если СНиП 23-02-2003) или по таблице 3 (если СП 50.13330.2012) для стен жилого здания (столбец 3).
4.1. Определение нормы тепловой защиты по условию санитарии
В нашем случае рассматривается в качестве примера, так как данный показатель рассчитывается для производственных зданий с избытками явной теплоты более 23 Вт/м 3 и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных).
Определение нормативного (максимально допустимого) сопротивления теплопередаче по условию санитарии (формула 3 СНиП 23-02-2003):
где: n = 1 — коэффициент, принятый по таблице 6 [1] для наружной стены;
tint = 20°С — значение из исходных данных;
text = -31°С — значение из исходных данных;
Δtn = 4°С — нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимается по таблице 5 [1] в данном случае для наружных стен жилых зданий;
αint = 8,7 Вт/(м 2 ×°С) — коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 [1] для наружных стен.
4.3. Норма тепловой защиты
Из приведенных выше вычислений за требуемое сопротивление теплопередачи выбираем Rreq из условия энергосбережения и обозначаем его теперь Rтр0= 3,214м 2 × °С/Вт .
5. Определение толщины утеплителя
Для каждого слоя заданной стены необходимо рассчитать термическое сопротивление по формуле:
где: δi- толщина слоя, мм;
λi — расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).
1 слой (декоративный кирпич): R1 = 0,09/0,96 = 0,094 м 2 × °С/Вт .
3 слой (силикатный кирпич): R3 = 0,25/0,87 = 0,287 м 2 × °С/Вт .
4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м 2 × °С/Вт .
Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала (формула 5.6 Е.Г. Малявина «Теплопотери здания. Справочное пособие»):
где: Rint = 1/αint = 1/8,7 — сопротивление теплообмену на внутренней поверхности;
Rext = 1/αext = 1/23 — сопротивление теплообмену на наружной поверхности, αext принимается по таблице 14 [5] для наружных стен;
ΣRi = 0,094 + 0,287 + 0,023 — сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м 2 ·°С/Вт
Толщина утеплителя равна (формула 5,7 [5]):
где: λут — коэффициент теплопроводности материала утеплителя, Вт/(м·°С).
Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм (формула 5.8 [5]):
где: ΣRт,i — сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м 2 ·°С/Вт.
Из полученного результата можно сделать вывод, что
R0 = 3,503м 2 × °С/Вт > Rтр0 = 3,214м 2 × °С/Вт → следовательно, толщина утеплителя подобрана правильно.
Влияние воздушной прослойки
В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.
Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:
а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае — это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;
б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи αext = 10,8 Вт/(м°С).
Примечание: влияние воздушной прослойки учитывается, например, при теплотехническом расчете пластиковых стеклопакетов.
Источник
Теплотехнический расчет конструкций: что это такое и как проводится
В климатических условиях северных географических широт для строителей и архитекторов крайне важен верно сделанный тепловой расчет здания. Полученные показатели дадут для проектирования необходимые сведения, в том числе и об используемых материалах для строительства, дополнительных утеплителях, перекрытиях и даже об отделке.
В целом теплорасчет влияет на несколько процедур:
- учет проектировщиками при планировании расположения комнат, несущих стен и ограждений;
- создание проекта отопительной системы и вентиляционных сооружений;
- подбор стройматериалов;
- анализ условий эксплуатации постройки.
Все это связано едиными значениями, полученными в результате расчетных операций. В этой статье мы расскажем, как сделать теплотехнический расчет наружной стены здания, а также приведем примеры использования этой технологии.
Задачи проведения процедуры
Ряд целей актуален только для жилых домов или, напротив, промышленных помещений, но большинство решаемых проблем подходит для всех построек:
- Сохранение комфортных климатических условий внутри комнат. В термин «комфорт» входит как отопительная система, так и естественные условия нагревания поверхности стен, крыши, использование всех источников тепла. Это же понятие включают и систему кондиционирования. Без должной вентиляции, особенно на производстве, помещения будут непригодны для работы.
- Экономия электроэнергии и других ресурсов на отопление. Здесь имеют место следующие значения:
- удельная теплоемкость используемых материалов и обшивки;
- климат снаружи здания;
- мощность отопления.
Крайне неэкономично проводить отопительную систему, которая просто не будет использоваться в должной степени, но зато будет трудна в установлении и дорога в обслуживании. То же правило можно отнести к дорогостоящим стройматериалам.
Теплотехнический расчет – что это
Теплорасчет позволяет установить оптимальную (две границы – минимальная и максимальная) толщину стен ограждающих и несущих конструкций, которые обеспечат длительную эксплуатацию без промерзаний и перегревов перекрытий и перегородок. Иначе говоря, эта процедура позволяет вычислить реальную или предполагаемую, если она проводится на этапе проектирования, тепловую нагрузку здания, которая будет считаться нормой.
В основу анализа входят следующие данные:
- конструкция помещения – наличие перегородок, теплоотражающих элементов, высота потолков и пр.;
- особенности климатического режима в данной местности – максимальные и минимальные границы температур, разница и стремительность температурных перепадов;
- расположенность строения по сторонам света, то есть учет поглощения солнечного тепла, на какое время суток приходится максимальная восприимчивость тепла от солнца;
- механические воздействия и физические свойства строительного объекта;
- показатели влажности воздуха, наличие или отсутствие защиты стен от проникновения влаги, присутствие герметиков, в том числе герметизирующих пропиток;
- работа естественной или искусственной вентиляции, присутствие «парникового эффекта», паропроницаемость и многое другое.
При этом оценка этих показателей должна соответствовать ряду норм – уровню сопротивления теплопередаче, воздухопроницаемости и пр. Рассмотрим их подробнее.
Требования по теплотехническому расчету помещения и сопутствующая документация
Государственные проверяющие органы, руководящие организацией и регламентацией строительства, а также проверкой выполнения техники безопасности, составили СНиП № 23-02-2003, в котором подробно излагаются нормы проведения мероприятий по тепловой защите зданий.
Документ предлагает инженерные решения, которые обеспечат наиболее экономичный расход теплоэнергии, которая уходит на отопление помещений (жилых или промышленных, муниципальных) в отопительный период. Эти рекомендации и требования были разработаны с учетом вентиляции, конверсии воздуха, а также со вниманием к месторасположению точек поступления тепла.
СНиП – это законопроект на федеральном уровне. Региональная документация представлена в виде ТСН – территориально-строительных норм.
Не все постройки входят в юрисдикцию этих сводов. В частности, не проверяются по этим требованиям те строения, которые отапливаются нерегулярно или вовсе сконструированы без отопления. Обязательным теплорасчет является для следующих зданий:
- жилые – частные и многоквартирные дома;
- общественные, муниципальные – офисы, школы, больницы, детские сады и пр.;
- производственные – заводы, концерны, элеваторы;
- сельскохозяйственные – любые отапливаемые постройки с/х назначения;
- складские – амбары, склады.
В тексте документа прописаны нормы для всех тех составляющих, которые входят в теплотехнический анализ.
Требования к конструкциям:
- Теплоизоляция. Это не только сохранение тепла в холодное время года и недопущение переохлаждений, промерзаний, но и защита от перегрева летом. Изоляция, таким образом, должна быть обоюдосторонней – предупреждение влияний извне и отдачи энергии изнутри.
- Допустимое значение перепада температур между атмосферой внутри здания и терморежимом внутренней части ограждающих конструкций. Это приведет к скоплению конденсата на стенах, а также к негативному влиянию на здоровье людей, находящихся в помещении.
- Теплоустойчивость, то есть температурная стабильность, недопущение резких перемен в нагреваемом воздухе.
- Воздухопроницаемость. Здесь важен баланс. С одной стороны, нельзя допустить остывания постройки из-за активной отдачи тепла, с другой стороны, важно предупредить появление «парникового эффекта». Он бывает, когда использован синтетический, «недышащий» утеплитель.
- Отсутствие сырости. Повышенная влажность – это не только причина для появления плесени, но и показатель, из-за которого происходят серьезные потери теплоэнергии.
Как делать теплотехнический расчет стен дома – основные параметры
Перед тем как приступить к непосредственному теплорасчету, нужно собрать подробные сведения о постройке. В отчет будут входить ответы на следующие пункты:
- Назначение здания – жилое это, промышленное или общественное помещение, конкретное предназначение.
- Географическая широта участка, где находится или будет располагаться объект.
- Климатические особенности местности.
- Направление стен по сторонам света.
- Размеры входных конструкций и оконных рам – их высота, ширина, проницаемость, тип окон – деревянные, пластиковые и пр.
- Мощность отопительного оборудования, схема расположения труб, батарей.
- Среднее количество жильцов или посетителей, работников, если это промышленные помещения, которые находятся внутри стен единовременно.
- Стройматериалы, из которых выполнены полы, перекрытия и любые другие элементы.
- Наличие или отсутствие подачи горячей воды, тип системы, которая за это отвечает.
- Особенности вентиляции, как естественной (окна), так и искусственной – вентиляционные шахты, кондиционирование.
- Конфигурация всего строения – количество этажей, общая и отдельная площадь помещений, расположение комнат.
Когда эти данные будут собраны, инженер может приступать к расчету.
Мы предлагаем вам три метода, которыми чаще всего пользуются специалисты. Также можно использовать комбинированный способ, когда факты берутся из всех трех возможностей.
Варианты теплового расчета ограждающих конструкций
Вот три показателя, которые будут приниматься за главный:
- площадь постройки изнутри;
- объем снаружи;
- специализированные коэффициенты теплопроводности материалов.
Теплорасчет по площади помещений
Не самый экономичный, но наиболее частотный, особенно в России, способ. Он предполагает примитивные вычисления исходя из площадного показателя. При этом не учитывается климат, полоса, минимальные и максимальные температурные значения, влажность и пр.
Также в учет не берут основные источники теплопотерь, такие как:
- Вентиляционная система – 30-40%.
- Скаты крыши – 10-25%.
- Окна и двери – 15-25%.
- Стены – 20-30%.
- Пол на грунте – 5-10%.
Эти неточности из-за неучета большинства важных элементов приводят к тому, что сам теплорасчет может иметь сильную погрешность в обе стороны. Обычно инженеры оставляют «запас», поэтому приходится устанавливать такое отопительное оборудование, которое полностью не задействуется или грозит сильному перегреву. Нередки случаи, когда одновременно монтируют отопление и систему кондиционирования, так как не могут правильно рассчитать теплопотери и теплопоступления.
Используют «укрупненные» показатели. Минусы такого подхода:
- дорогостоящее отопительное оборудование и материалы;
- некомфортный микроклимат внутри помещения;
- дополнительная установка автоматизированного контроля за температурным режимом;
- возможные промерзания стен зимой.
Q=S*100 Вт (150 Вт)
- Q – количество тепла, необходимое для комфортного климата во всем здании;
- Вт S – отапливаемая площадь помещения, м.
Значение 100-150 Ватт является удельным показателем количества тепловой энергии, приходящейся для обогрева 1 м.
Если вы выбираете этот метод, то прислушайтесь к следующим советам:
- Если высота стен (до потолка) не более трех метров, а количество окон и дверей на одну поверхность 1 или 2, то умножайте полученный результат на 100 Вт. Обычно все жилые дома, как частные, так и многоквартирные, используют это значение.
- Если в конструкции присутствуют два оконных проема или балкон, лоджия, то показатель возрастает до 120-130 Вт.
- Для промышленных и складских помещений чаще берется коэффициент в 150 Вт.
- При выборе отопительных приборов (радиаторов), если они будут расположены возле окна, стоит прибавить их проектируемую мощность на 20-30%.
Теплорасчет ограждающих конструкций по объему здания
Обычно такой способ используется для тех строений, где высокие потолки – более 3 метров. То есть промышленные объекты. Минусом такого способа является то, что не учитывается конверсия воздуха, то есть то, что вверху всегда теплее, чем внизу.
- V – наружный объем строения в м куб;
- 41 Вт – удельное количество тепла, необходимое для обогрева одного кубометра здания. Если строительство ведется с применением современных строительных материалов, то показатель равен 34 Вт.
Для общей формулы мы советуем дополнительно использовать коэффициенты – это число, на которое нужно умножить результат:
- Стекла в окнах:
- двойной пакет – 1;
- переплет – 1,25.
- Материалы утеплителя:
- новые современные разработки – 0,85;
- стандартная кирпичная кладка в два слоя – 1;
- малая толщина стен – 1,30.
- Температура воздуха зимой:
- -10 – 0,7;
- -15 – 0,9;
- -20 – 1,1;
- -25 – 1,3.
- Процент окон в сравнении с общей поверхностью:
- 10% – 0,8;
- 20% – 0,9;
- 30% – 1;
- 40% – 1,1;
- 50% – 1,2.
Все эти погрешности могут и должны быть учтены, однако, редко используются в реальном строительстве.
Источник