Допустимый крен фундамента башенного крана

Руководство по определению кренов инженерных сооружений башенного типа геодезическими методами

Купить бумажный документ с голограммой и синими печатями. подробнее

Цена на этот документ пока неизвестна. Нажмите кнопку «Купить» и сделайте заказ, и мы пришлем вам цену.

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль»

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Рассмотрены вопросы организации геодезических наблюдений за кренами высоких сооружений, построения опорной сети, расчета требуемой точности геодезических измерений, учета влияния факторов внешней среды на результаты определения крена и вопросы цикличности наблюдений. Детально изложена методика определения крена различными геодезическими способами с указанием области их целесообразного применения, а также методика обработки результатов наблюдений.

Для инженерно-технических работников, занимающихся наблюдениями за деформациями инженерных сооружений башенного типа и обеспечением безаварийной эксплуатации этих сооружений.

Оглавление

1. Общие положения

2. Геодезическая основа для наблюдений за кренами сооружений

3. Периодичность определения кренов сооружений

4. Расчет необходимой точности измерений для определения крена сооружения. Влияние внешней среды и других факторов на точность определения крена

5. Методика измерений при определении кренов сооружений

6. Способы определения кренов инженерных сооружений башенного типа

Приложение 1. Вычисление абсолютного крена и его направления по формулам (6.7) — (6.14)

Приложение 2. Карточка кренов дымовой трубы кольцевой печи № 2

Приложение 3. График измерения крена трубы кольцевой печи № 2

Дата введения 01.02.2020
Добавлен в базу 01.10.2014
Актуализация 01.02.2020

Этот документ находится в:

  • Раздел Экология
    • Раздел 91 СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ И СТРОИТЕЛЬСТВО
      • Раздел 91.200 Технология строительства
        • Раздел 91.200.01 Технология строительства в целом

Организации:

Разработан ЦНИИОМТП Госстроя СССР
Издан Стройиздат 1981 г.
Утвержден ЦНИИОМТП Госстроя СССР

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

Руководство

ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНО-ЭКСПЕРИМЕНТАЛЬНЫЙ ИНСТИТУТ ОРГАНИЗАЦИИ, МЕХАНИЗАЦИИ И ТЕХНИЧЕСКОЙ ПОМОЩИ СТРОИТЕЛЬСТВУ (ЦНИИОМТП) ГОССТРОЯ СССР

РУКОВОДСТВО

МОСКВА СТРОЙИЗДАТ 1981

При меньших требованиях к точности определения крена сооружений средней н небольшой высоты способом координат геодезическая основа проектируется в виде полигонометрии 1-го разряда повышенной точности и 1-го разряда.

2.8. Проект геодезической основы составляют на планах масштаба 1:1000—1:5000, на которых показано подлежащее наблюдениям сооружение.

Сначала на план наносят исходные пункты, т. е. пункты существующей геодезической сети, если таковые имеются. Если положение некоторых из них удовлетворяет вышеизложенным требованиям, то их следует наметить в качестве опорных пунктов.

После этого намечают пункты геодезической основы в соответствии с выбранным методом ее построения (триангуляции пли полигонометрии), выбирая их положение под условием возможно более полного соблюдения указанных выше требований. При этом необходимо стремиться к наиболее рациональной привязке проектируемой сети к существующей, к максимальному использованию сторон последней (если она удовлетворяет по точности) в качестве исходных для новой сети.

В Пункты полигоно-

мюоаемое сооружение 100 м. J

Примечание. При наблюдениях сооружений, имеющих заметные наклоны, допуски для погрешностей определения крена (4.1) могут быть увеличены вдвое, т. е.:

4.2, За требуемую точность определения крена при расчете обычно принимают величину, равную половине предельной погрешности.

4.3. Расчет необходимой точности измерения горизонтальных углов при наблюдениях наиболее распространенными способами, основанными на прямой угловой засечке, можно выполнить по следующей приближенной формуле:

где /Лр — необходимая средняя квадратическая ошибка измерения горизонтальных углов; mq — требуемая средняя квадратическая ошибка опрсделе-

ния крена; угол засечки;

расстояния от пунктов наблюдения до засекаемого центра верхнего сечения сооружения в координатной (горизонтальной) плоскости.

Если принять 2 см, т. е. половине предельной погрсшиосп (4.1), a s*=2H—3Я, то необходимая точность измерения горизонтальных углов, вычисленная по формуле (4.4) для различных значений угла засечки и высоты сооружения, будет определяться величинами, приведенными в табл. 1.

Требуемая средняя квадратическая ошибка измерения углов /лр» при высоте Н, м

Примечание. При разных расстояниях от пунктов наблюдения до сооружения, т. е. при si^s2, что обычно и имеет место на практике, для расчета по формуле (4.4) следует использовать расстояние от наиболее удаленного пункта.

4.4. При меньших или больших требованиях к точности определения крена (при меньших или больших величинах mQ) требования к точности измерения горизонтальных углов могут быть также определены по формуле (4.4).

4.5. Необходимо добиваться того, чтобы значение угла засечки находилось в пределах от 60 до 120° (60° o ), а значение расстояния было не более ЗН (см. табл. 1), путем соответствующего размещения пунктов наблюдения. В этом случае требования к точности измерений снижаются.

Примечание. Требование размещения пунктов наблюдения не ближе 2# диктуется главным образом соображениями удобства измерений.

4.6. При систематических определениях кренов сооружений башенного типа со средними квадратическими погрешностями, не превышающими предельных значений (4.1), помимо обеспечения высокой точности собственно измерения горизонтальных углов необходимо в наибольшей мере ослабить или исключить неблагоприятное влияние внешних условий, искажающих результаты измерений.

К основным факторам внешней среды при наблюдениях за кренами относятся неравномерный нагрев сооружения в солнечные дни, воздействие на сооружение ветрового потока, влияние рефракции.

4.7. Для исключения влияния солнечной радиации на результаты определения крена наблюдения следует производить в утренние часы до восхода солнца и в пасмурные дни.

4.8. При необходимости выполнения наблюдений в солнечную погоду величину отклонения верха сооружения вследствие упругого изгиба его под влиянием одностороннего солнечного нагрева приближенно можно определить по формулам:

для сооружения с цилиндрической формой поверхности

Рекомендовано к изданию решением секции строительного производства НТС ЦНИИОМТП Госстроя СССР.

Руководство по определению кренов инженерных сооружений башенного типа геодезическими метода ми/Центр. н.-и. и проект.-экспе-рим. ин-т организации, механизации и техн. помощи стр-ву Госстроя СССР. — М.: Стройиздат, 1981. — 56 с.

Рассмотрены вопросы организации геодезических наблюдений за кренами высоких сооружений, построения опорной сети, расчета требуемой точности геодезических измерений, учета влияния факторов внешней среды на результаты определения крена и вопросы цикличности наблюдений. Детально изложена методика определения крена различными геодезическими способами с указанием области их целесообразного применения, а также методика обработки результатов наблюдений.

Для инженерно-технических работников, занимающихся наблюдениями за деформациями инженерных сооружений башенного типа и обеспечением безаварийной эксплуатации этих сооружений.

Р пач7л\\—51- Инструкт.-нормат., II вып. — 80—81. 3202000000

Крен является наиболее характерным показателем совместной деформации сооружения башенного типа и его основания. В таких сооружениях, обладающих повышенной чувствительностью к деформациям грунтов основания, крен вызывает развитие дополнительного момента, который в свою очередь способствует увеличению крена и может привести к потере устойчивости сооружения.

Поэтому в проектах высоких сооружений предусматривается наряду с наблюдениями за осадками оснований и фундаментов проведение натурных измерений кренов как в процессе строительства, так и особенно в процессе эксплуатации.

К настоящему времени разработано немало способов решения указанной задачи, о чем свидетельствуют многочисленные публикации. Возникла необходимость в обобщении накопленного опыта, в разработке пособия инструктивного и вместе с тем обобщающего характера, которое бы охватывало весь комплекс вопросов, возникающих при определении кренов, и регламентировало производство геодезических работ.

Руководство разработано на основе обобщения результатов научно-исследовательских и опытно-производственных работ, выполненных вузами, научно-исследовательскими и проектными институтами и производственными организациями.

Разработано кафедрой Днепропетровского института инженеров железнодорожного транспорта им. М. И. Калинина (кандидаты тсхн. наук Е. Н. Губенко, А. С. Ким, ст. инж. М. А. Красавцев) и отделом метрологии, геодезии, стандартизации ЦНИИОМТП (канд. техн. наук В. С. Ситник).

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящее Руководство составлено к главе СНиП Ш-2-75 «Геодезические работы в строительстве» и «Руководству по производству геодезических работ в промышленном строительстве» и содержит методические указания по организации, проведению и обработке геодезических наблюдений за кренами промышленных и гражданских сооружений башенного типа.

1.2. Наблюдения за кренами и осадками сооружений в период строительства производятся специализированными геодезическими организациями по договору с организациями, осуществляющими строительство.

В период эксплуатации определение кренов и осадок промышленных сооружений выполняется геодезическими службами промышленных предприятий или специализированными организациями, а гражданских сооружений — специализированными организациями по договору с учреждениями, осуществляющими эксплуатацию.

1.3. Крен сооружения может быть выражен в линейной, угловой и относительной мере.

Под линейной величиной абсолютного крена в i-м цикле наблюдений понимается отрезок между проекциями центра подошвы фундамента и положения центра верхнего сечения сооружения на координатную (горизонтальную) плоскость. Приращение крена в линейной мере представляет собой расстояние (отрезок) между проекциями положений центра верхнего сечения сооружения в двух циклах наблюдений на координатную плоскость.

Абсолютный крен в угловой мере определяется острым углом между отвесной линией в центре подошвы фундамента и положением оси сооружения в i-м цикле.

Относительным креном называют отношение абсолютного крена сооружения в i-м цикле к высоте сооружения.

Примечание. Под координатной плоскостью в строгом смысле подразумевается плоскость, перпендикулярная к отвесной линии в центре подошвы фундамента.

1.4. Наблюдения за кренами сооружений, так же как и за остальными видами деформаций, проводятся в соответствии с требованиями главы СКиП II-15-74 «Основания зданий и сооружений». Эти нормы ограничивают совместную деформацию основания и сооружения предельно допустимой величиной, соответствующей пределу эксплуатационной пригодности сооружения.

inp = 0,005 при Н 3 Д высоты сооружения, наиболее выгодную геометрическую форму засечки и на удалении порядка двух-трех высот от сооружения.

Наивыгоднейшей формой засечки является та, при которой угол засечки у=90°.

При составлении проекта основы следует стремиться к тому, чтобы этот угол находился в пределах от 60 до 120°, а пункты наблюдения располагались примерно на одинаковом удалении от сооружения.

2.3. Перед проектированием геодезической основы необходимо собрать сведения о ранее выполненных на территории сооружения геодезических работах, картографические и топографические материалы, проанализировать их качество и пригодность к использованию в проектируемых работах, данные о подземных коммуникациях.

Проектируемая сеть должна располагаться с учетом удобства привязки ее к пунктам существующей геодезической сети (плановой и высотной) или возможности использования этих пунктов в качестве пунктов наблюдения. На промышленных предприятиях в качестве пунктов наблюдения за кренами дымовых труб можно использовать пункты геодезической сети, предназначенной для крупномасштабных съемок и разбивочных работ при расширении и реконструкции предприятия, или сохранившиеся пункты геодезической основы строительной площадки.

2.4. Привязку проектируемой основы к близлежащим пунктам государственной геодезической сети следует производить по согласованию с территориальными органами Госгеонадзора ГУ ГК.

2.5. При проектировании самостоятельной геодезической основы следует установить условную систему координат с началом в точке, расположенной в юго-западной части участка сети для получения положительных и минимальных по величине координат, и осью абсцисс, ориентированной по инстинному меридиану.

2.6. Наиболее целесообразный метод построения геодезической основы устанавливается в зависимости от высоты сооружения и

ля высокоточных систематических наблюдений за креном сооружения большой высоты (250—400 м), выполняемых, как правило, способом координат, создают основу в виде кольцевой системы триангуляции, одной из разновидностей которой является центральная система различной степени сложности (рис. I), или в виде геодезического четырехугольника.

Обычно такая сеть имеет и другое назначение — она должна служить главной геодезической основой для развития разбивочной сети, с помощью которой осуществляется вынос в натуру проекта самого сооружения и сопутствующих ему других инженерных сооружений.

;мой точности определения его крена.

Наиболее рационально применение метода триангуляции в случае построения геодезической основы для систематических высокоточных наблюдений за кренами совокупности высоких сооружении, в частности промышленных дымовых труб, которых на территории современных крупных предприятий может насчитываться до нескольких десятков, включая и трубы большой высоты.

д Пункты триангуляции © Наблюдаемое сооружение = базисная сторона —Напрабления засечки

Рис. 1. Геодезическая основа для способа координат в виде

а — центральная система; б — геодезический четырехугольник

В зависимости от этих факторов и от высоты сооружения длины сторон треугольников могут колебаться от 0,5 до 3 км. В сети триангуляции указанной конфигурации должно быть запроектировано не менее одной базисной стороны — связующей стороны, длина которой определяется из непосредственных измерений.

Для наблюдений одиночных сооружений большой высоты основа может быть создана и методом полигонометрии с длинами сторон 400—800 м в зависимости от высоты.

Для сооружений средней (150—250 м) и небольшой высоты (до 150 м), наблюдения за кренами которых требуют применения способа координат, строится замкнутый полигонометрический ход с длиной линии 100—500 м (рис. 2).

2.7. Проектируемая сеть опорных пунктов является исходной основой для определения положения наблюдаемых точек сооружения.

Точность определения положения опорных пунктов должна быть выше требуемой точности определения крена не менее чем в 1,5 раза. Для получения величины крена с точностью порядка 2—3 см ошибка взаимного положения исходных пунктов (в том числе и пунктов наблюдения) не должна превышать 1,5—2 см. Этим требованиям удовлетворяет триангуляция или полигонометрия 4-го класса.

Такие сети обычно и создают в качестве главной геодезической основы на территории промышленных предприятий.

Источник

Читайте также:  Кирпичный ленточный фундамент цокольного этажа
Оцените статью