Формула для напряжений под подошвой фундамента

Проверка напряжений под подошвой фундамента

Расчет преследует цель определить среднее. Максимальное и минимальное напряжение под подошвой фундамента и сравнить их с расчётным сопротивлением грунта.

Где Р, Рmax и Рmin— соответственно среднее, максимальное и минимальное давление подошвы фундамента на основание;

N1— расчётная вертикальная нагрузка на основание с учетом гидростатического давления, если оно имеет место;

M1— расчётный момент относительно оси, проходящей через центр тяжести подошвы фундамента;

А – площадь подошвы;

W – момент сопротивления по подошве фундамента;

yс— коэффициент условий работы принимаем 1,2;

yn— коэффициент надежности по назначению сооружения, принимаем равным 1,4;

W= где

l- длина подошвы фундамента

b- ширина подошвы фундамента

R- расчётное сопротивление грунта под подошвой фундамента

Расчётная вертикальная нагрузка на основание определяется по формуле:

Где pф и рг— нагрузки от веса фундамента и грунта на его уступах, мН;

рв— нагрузка от веса воды, действующей на уступы фундамента (учитывается, если фундамент врезан в водонепроницаемый грунт), мН;

pп— вес пролётного строения, мН;

рк— ила, действующая от временной вертикальной подвижной нагрузки, мН;

Момент сопротивления по подошве фундамента будет равна:

W= W=

Расчётный момент относительно оси, проходящей через центр тяжести подошвы фундамента, будет равен:

Теперь проверим, выполняется ли условие напряжений под подошвой фундамента:

Р=

Рmax=

Pmin=

Р=

Рmax=

Pmin=

Р= — выполняется

Рmax= — выполняется

Pmin= — выполняется

Все три условия прочности напряжений под подошвой фундамента выполняются, следовательно, расчёт произведен правильно.

3.5 Расчёт осадки фундамента

,где

— безразмерный коэффициент, равный 0,8;

Gzpi-среднее вертикальное (дополнительное) напряжение в i-м слое грунта;

hi и Ei-соответственно толщина и модуль деформации i-м слое грунта:

n – число слоев, на которое разбита сжимаемая толща основания.

Техника расчёта сводится к следующему:

1. Сжимаемую толщину грунтов, расположенную ниже подошвы фундамента, разбивают на элементарные слой толщиной hi , где b – ширина подошвы фундамента=5,44 м. толщина слоя принимается hi=2,0м.

Границы элементарных слоев должны совпадать с границами слоев грунтов и уровнем подземных вод.

Глубина разбивки должна быть примерно 3* b=3*5,44=16,3м

Разбиваем на 10 слоев. Данные расчёта заносятся в таблицу 2.

2. Определяем значения вертикальных напряжений от собственного веса грунта на уровне подошвы фундамента и на границе каждого подслоя

— вертикальное напряжение от собственного веса грунта на уровне подошвы фундамента

,

Где Кк— геостатический коэффициент бокового давлении, равен 1;

у – удельный вес грунта ниже уровня грунтовых вод (определяется с учетом взвешивающего действия воды) уsb=10 кН/м 2

Отсюда: кПа

zi— расстояние от подошвы расчётного слоя до подошвы фундамента;

уi— удельный вес грунтов i-го слоя. Удельный вес грунтов залегающих ниже уровня грунтовых вод или ниже воды в реке, но выше водоупора, должен определяться с учётом взвешивающего действия воды: В водоупоре напряжение от собственного веса грунта в любом горизонтальном сечении без учёта взвешивающего действия воды.

Определяем значения вертикальных напряжений от собственного веса грунта на границе каждого подслоя ( данные заносим в табл.). По результатам расчёта строим эпюру вертикальных напряжений от собственного веса грунта.

3. Определяем дополнительное к природному вертикальное напряжение под подошвой фундамента по формуле:

, Где

Р- среднее давление на грунт от нормативных постоянных нагрузок

Р= , где

A – площадь подошвы фундамента,

N11— расчетная вертикальная сила

рn-вес пролетного строения;

рг— нагрузка от веса грунта на его уступах;

рв— нагрузка от веса воды, действующей на уступы фундамента (учитывается если фундамент резан водонепроницаемый грунт)

N11=4,3+1,49+5,6=11,39*10 3 =11390кН

Р= кН/м 2

кН/м 2

Значение ординат эпюры распределения дополнительных вертикальных напряжений в грунте вычисляем по формуле:

, где

— коэффициент, принимаемый из таблицы в зависимости от формы подошвы фундамента.

Соотношение сторон прямоугольного фундамента

и относительной глубины, равной

Находим по таблице коэффициент , вычисляем значения ординат эпюры распределения дополнительных вертикальных напряжений в грунте.

Расч. слой № слоя Толщина слоя, h, м zi, м кПа γi, кН/м 3 0.2 2z/b Е1 Si
кПа кПа
глина 2,8 10,0 7,0 142,38 137,19 13.000 0,057
глина 1,5 1,5 10,0 0.60 0,927 132,0 114,63 20.000 0,025
2,0 3,5 10,0 1,29 0,683 97,25 85,43 0,013
2.0 5,5 10,0 2,02 0,517 73,61 62,93 0,009
2.0 7,5 10,0 2,78 0,367 52,25 50,33 0,003
Песок мелкий 0,9 8,4 10,0 23,8 3,09 0,340 48,41 40,65 37.000 0,002
2,0 10,4 10.0 27,8 3,82 0,231 32,90 29,48 0,002
2,0 12,4 10,0 31,8 4,56 0,183 26,06 24,14 0,002
2,0 14,4 10.0 35,8 5,30 0,156 22,21 20,43 0,001
0.6 15,0 10,0 37,0 5,52 0,138 19,65 Итого: 0,114

4.Определяют нижнюю границу сжимаемой толщи (В.С). Она находится на горизонтальной плоскости, где соблюдается условие:

5.Определяем осадку каждого слоя основания по формуле:

Определим среднее значение дополнительного вертикального нормального напряжения в i-м слое грунта по вертикальной оси, проходящей через центр подошвы фундамента:

Осадка основания фундамента получается суммированием величины осадки каждого слоя. Она не должна превышать предельно допустимой осадки сооружения, определяемой по формуле:

Su=1,5*

Где lp – длина меньшего примыкающего к опоре пролета (исх.данные=44м)

0,057+0,025+0,013+0,009+0,003+0,002+0,002+0,002+0,001=0,114

0,114 — условие выполняется

Источник

Определение напряжений по подошве фундаментов и сооружений

Общие положения. При взаимодействии фундаментов и сооружений с грунтами основания на поверхности контакта возникают контактные напряжения. Знание контактных напряжений необходимо как для расчета напряжений в основании, создаваемых сооружением, так и для расчетов самих конструкций.

Отметим, что расчет сооружений на действие контактных напряжений обычно рассматривается в курсе строительной механики.

Характер распределения контактных напряжений зависит от жесткости, формы и размеров фундамента или сооружения и от жесткости (податливости) грунтов основания. Различают три случая, отражающих способности сооружения и основания к совместной деформации:

1) абсолютно жесткие сооружения, когда деформируемость сооружения ничтожно мала по сравнению с деформируемостью основания, и при определении контактных напряжений сооружение можно рассматривать как недеформируемое;

2) абсолютно гибкие сооружения, когда деформируемость сооружения настолько велика, что оно свободно следует за деформациями основания;

3) сооружения конечной жесткости, когда деформируемость сооружения соизмерима с деформируемостью основания; в этом случае они деформируются совместно, что вызывает перераспределение контактных напряжений.

Характерными примерами абсолютно жестких конструкций являются массивные фундаменты под мостовые опоры, дымовые трубы, тяжелые прессы, кузнечные молоты и т. д., абсолютно гибких – земляные насыпи, днища металлических резервуаров и т. п. Большинство сооружений (плитные фундаменты, балки, ленточные фундаменты) по условиям работы конструкций имеют конечную жесткость.

Критерием оценки жесткости сооружения может служить показатель гибкости по М.И. Горбунову-Посадову

е ≈ 10 (El 3 /Eкh 3 ), (8.1)

где Е и Ек модули деформации грунта основания и материала конструкции; l и h — длина и толщина конструкции.

Конструкция сооружения или фундамента считается абсолютно жесткой, если t≤1. В первом приближении жесткость конструкции можно оценить исходя из соотношения ее толщины и длины. При h/l>1/3 конструкция может рассматриваться как абсолютно жесткая.

Существенное значение имеет также соотношение длины l и ширины b сооружения. При 1/b≥0 распределение контактных напряжений соответствует случаю плоской задачи, при. l/b 2 ) цилиндрическая жесткость полосы; f(x) интенсивность заданной на полосу нагрузки; р(х) – интенсивность неизвестной эпюры контактных напряжений. Напомним, что индекс «к» относится к конструкции; следовательно, Ек и vк – соответственно модуль упругости и коэффициент Пуассона материала полосы; Iк – момент инерции ее поперечного сечения.

В уравнении (8.2) содержатся две неизвестные величины: w(x) и р(х). Следовательно, для решения задачи необходимо введение дополнительного условия. Это условие определяется в зависимости от принятия той или иной модели: местных упругих деформаций или упругого полупространства.

Модель местных упругих деформаций.Предпосылки этой модели впервые были сформулированы русским академиком Фуссом в 1801 г., а сама модель разработана в 1867 г. Винклером для расчетов железнодорожных шпал. В дальнейшем модель местных упругих деформаций была развита в работах Н. П. Пузыревского, С. П. Тимошенко, А. Н. Крылова, П. Л. Пастернака и др.

Рис. 8.2. Схема балки (а) и расчетная схема для случая плоской задачи (б)

Согласно этой модели, реактивное напряжение в каждой точке поверхности контакта прямо пропорционально осадке поверхности основания в той же точке:

p(x) = kw(x), (8.3)

где к — коэффициент пропорциональности, часто называемый коэффициентом постели, Па/м.

Схема деформирования такого основания показана на рис. 8.3, а. Видно, что в соответствии с моделью местных упругих деформаций осадки поверхности основания за пределами габаритов фундамента отсутствуют, т. е. фундамент как бы установлен на пружинах, сжимающихся только в пределах его контура.

Рис. 8.3. Деформации поверхности основания: а – по модели упругих деформаций; б – по модели упругого полупространства

Модель упругого полупространства. Эта модель была предложена Г. Э. Проктором в 20-х годах нашего столетия и развита благодаря работам Н. М. Герсеванова, М. И. Горбунова-Посадова, Б. Н. Жемочкина, А. П. Синицына и других ученых.

В отличие от предыдущей модели в этом случае поверхность грунта оседает как в пределах площади загрузки, так и за ее пределами (рис. 8.3, б), причем кривизна прогиба зависит от механических свойств грунтов и мощности сжимаемой толщи в основании.

В случае плоской деформации прогиб поверхности под действием сосредоточенной силы Р описывается уравнением

(8.4)

где С = Е/(1 – ν 2 ) – коэффициент жесткости основания; х — координата точки поверхности, в которой определяется осадка; ζ — координата точки приложения силы Р; D — постоянная интегрирования. При определении прогибов поверхности от действия распределенной нагрузки уравнение (8.4) следует проинтегрировать по площади загружения.

Недостаток модели упругого полупространства заключается в том, что в ней не ограничивается мощность сжимаемой толщи в основании сооружения. В реальных условиях взаимодействия фундамента и основания мощность сжимаемой толщи обычно бывает ограничена, что влияет на характер распределения контактных напряжений. В связи с этим разработаны различные модификации модели упругого слоя грунта, подстилаемого недеформируемой толщей, приведенные в работах О. Я. Шехтер, К. Е. Егорова, И. К. Самарина, Г. В. Крашенинниковой и др.

Общая схема определения контактных напряжений с использованием указанных выше моделей заключается в совместном решении уравнения (8.2) и условия (8.3) в случае модели местных упругих деформаций или уравнений (8.2) и условия типа (8.4) в случае модели упругого полупространства. Методы решения этих задач приведены, например, в учебнике П. Л. Иванова (1991).

Для практических расчетов контактных напряжений используются приведенные в табличной форме решения М. И. Горбунова-Посадова, Б. Н. Жемочкина, А. П. Синицьша, Г. В. Крашенинниковой и др. Наиболее полные сведения по этому вопросу представлены в монографии М. И. Горбунова-Посадова, Т. А. Маликовой, В. И. Соломина «Расчет конструкций на упругом основании», удостоенной в 1987 г. Государственной премии СССР.

Область применения различных моделей. Практика расчетов показывает, что модель местных упругих деформаций позволяет получить хорошее совпадение с действительностью при возведении фундаментов на сильносжимаемых грунтах (при Е≤ 5 МПа), на лёссовых просадочных грунтах, а также при ограниченной толще сжимаемых грунтов, подстилаемых практически недеформируемыми, например скальными породами. Модель упругого полупространства применима при наличии в основании достаточно плотных грунтов и при не слишком больших площадях опорных поверхностей. Для сооружений с площадью опирания в десятки и сотни квадратных метров более близкие к действительности результаты дает модель упругого слоя ограниченной мощности.

Контактные напряжения на подошве центрально-загруженных абсолютно жестких фундаментов.При определении контактных напряжений в этом случае исходят из того, что вертикальные перемещения любой точки поверхности грунта в уровне подошвы одинаковы, т. е. w(x,у)=const. Тогда для круглого в плане фундамента контактные напряжения определятся выражением

(8.5)

где рm — среднее напряжение под подошвой фундамента радиусом r; ρ — расстояние от центра фундамента до точки, в которой определяется ордината контактного напряжения р(ρ).

Аналогичным образом определяются и контактные напряжения под жестким полосовым фундаментом в случае плоской задачи:

(8.6)

где х — расстояние от середины фундамента до рассматриваемой точки; а = b/2— полуширина фундамента.

Приведенные решения показывают, что теоретически эпюра контактных напряжений под жестким фундаментом имеет седлообразный вид с бесконечно большими значениями напряжений по краям (при ρ = r или x=b/2). Однако вследствие пластических деформаций грунта в действительности контактные напряжения характеризуются более пологой кривой и у края фундамента достигают значений, соответствующих предельной несущей способности грунта (пунктирная кривая на рис. 8.4, а).

Рис. 8.4. Эпюры контактных напряжений: a — под жестким круглым штампом; б— под плоским фундаментом при различном показателе гибкости

Изменение показателя гибкости существенно сказывается на изменении характера эпюры контактных напряжений. На рис. 8.4, б в качестве примера приведены контактные эпюры для случая плоской задачи при изменении показателя гибкости t от 0 (абсолютно жесткий фундамент) до 5.

Как отмечалось выше, достоверное знание контактных напряжений необходимо для расчетов конструкции фундаментов сооружений, взаимодействующих с грунтом. При расчетах напряжений в основаниях от действия нагрузок, соответствующих контактным напряжениям, часто оказывается возможным вводить существенные упрощения. Это связано с тем, что неравномерное распределение контактных напряжений по подошве фундамента оказывает заметное влияние на изменение напряжений лить в верхней части основания на глубину порядка половины ширины фундамента.

Упрощенное определение контактных напряжений. Если контактные напряжения по подошве фундамента определяются для последующих расчетов напряжений в основании, то допускается независимо от жесткости фундамента .использовать формулы внецентренного сжатия. Тогда для центрально-нагруженного силой Р фундамента будет иметь место равномерное распределение напряжений по его подошве: р=Р/А, где А — площадь фундамента. В случае плоской задачи при нагружении фундамента силой Р и моментом М, действующим в этой плоскости, краевые значения контактных напряжений определятся выражением

(8.7)

где W — момент сопротивления площади подошвы выделенной полосы фундамента. Распределение контактных напряжений между этими значениями будет иметь линейный характер.

Теперь уже распределение напряжений в основании ниже подошвы фундамента можно рассчитать, если рассматривать полученную таким образом эпюру контактных напряжений как абсолютно гибкую местную нагрузку, действующую в этой плоскости.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Читайте также:  Пошаговое строительство фундамента для бани
Оцените статью