Фундамент для сейсмически активных зон

Фундаменты в сейсмических районах

§ 65. Общие сведения о сейсмических воздействиях

Сейсмическая активность земли проявляется на обширной части СССР. Общая площадь районов, подверженных землетрясениям, составляет около 28% территории страны.

Подавляющее большинство землетрясений возникает в результате тектонических процессов. Такие землетрясения наиболее часты (90% всех землетрясений) и достигают значительной силы. Происходящие вблизи действующих вулканов землетрясения охватывают небольшие территории. Они намного слабее тектонических. Еще меньшей силой обладают местные землетрясения, возникающие в результате горных обвалов, оползней, провалов карстовых полостей, шахтных и других выработок.

Землетрясения возникают, как правило, в определенных зонах (сейсмических), где продолжаются горообразовательные процессы. В этих зонах земная кора расчленена тектоническими разломами на отдельные массивы, испытывающие интенсивные взаимные смещения. Вызванные ими нарушения происходят по существующим или по вновь образовавшимся разломам.

Находящаяся в глубине земли область нарушения коры является очагом (гипоцентром) землетрясения. Проекция этого очага из центра земли на ее поверхность называется эпицентром землетрясения. Очаги обычно имеют вытянутую вдоль разломов форму. Их размеры изменяются от нескольких метров до десятков километров и в основном предопределяют силу землетрясения. При разрушительных землетрясениях очаги в большинстве случаев располагаются в толще земной» коры на глубине 10—50 км и более от ее поверхности.

В районе землетрясения каждая точка земли испытывает последовательное воздействие волн разного вида, поэтому колебания грунта при землетрясениях носят сложный пространственный характер. Из-за этого сейсмические силы могут иметь любое направление в пространстве и к тому же быть переменными по направлению, скорости и величине.

Продолжительность сейсмического импульса и вызываемых им колебаний грунта измеряется десятками секунд, а иногда несколькими минутами. Наиболее опасное воздействие землетрясения происходит в первые 20—40 с, чаще всего с первым мощным импульсом и следующим за ним сейсмическим колебанием грунта.

Читайте также:  Калькулятор дома газоблок фундамент

Для обеспечения достаточной надежности зданий и сооружений, возводимых в сейсмических районах, прежде всего необходимо знать силу землетрясения, которую обычно оценивают по общему разрушительному эффекту, характеризуемому сейсмическими баллами по соответствующей шкале.

Известно много сейсмических шкал, предложенных в разных странах и в разные годы. В СССР с 1952 г. принята 12-балльная сейсмическая шкала (ГОСТ 6249—52), составленная на основе разработок Института физики Земли АН СССР. В качестве классификационных признаков для оценки силы землетрясения в этой шкале приняты: степень повреждения и число поврежденных зданий разных типов; остаточные явления в грунтах и изменение режима подземных вод; прочие признаки (поведение домашних животных, ощущения людей). Кроме этого, каждый балл землетрясения характеризуют определенным диапазоном относительных смещений маятника стандартного сейсмометра и соответствующим ускорением смещения грунта.

С инженерной точки зрения к сейсмическим районам относят районы с силой землетрясения б баллов и выше. На территории СССР землетрясения 10 баллов и выше происходят крайне редко, поэтому в отечественном сейсмостойком строительстве учитывают землетрясения в диапазоне 6—9 баллов.

При характеристике степени повреждения и разрушения частей зданий под легкими повреждениями подразумевают тонкие трещины в штукатурке, кладке печей и т. п.; под значительными повреждениями — трещины в штукатурке и откалывание ее кусков, тонкие трещины в стенах, повреждения дымовых труб отопительных печей и т. п.; под разрушениями — большие трещины в стенах, расслоение каменной кладки, обрушение отдельных участков стен, падение карнизов и парапетов, обвалы штукатурки, падение дымовых труб отопительных печей и т. п.; под обвалами — полное или частичное обрушение стен, перекрытий и т. п.

Здания и сооружения, расположенные в сейсмических районах, подвергаются во время землетрясений воздействию особых факторов, приводящих к появлению дополнительных усилий в конструкции и к изменению условий ее работы. Совокупность этих факторов, вызывающих повреждения сооружений, называют сейсмическим воздействием. Повреждения дорог и дорожных сооружений наблюдаются при силе землетрясения 7 баллов и выше.

Ликвидация сейсмических повреждений земляного полотна, верхнего строения пути или покрытия производится сравнительно простыми техническими средствами и восстановление этих элементов дорог не требует длительного времени. Повреждения мостов и тоннелей приводят к продолжительным перерывам в движении, так как их восстановление связано с необходимостью выполнения длительных и трудоемких работ. По этой причине в нормах сейсмостойкого строительства многих стран для мостов и некоторых других дорожных сооружений предусмотрены повышенные гарантии сейсмостойкости.

Анализ последствий землетрясений показывает, что повреждения мостов происходят вследствие смещения или повреждения пролетных строений либо повреждения опор или же тех и других одновременно. Повреждения опор мостов можно подразделить на две группы: перемещения опор относительно первоначального положения (сдвиги, осадки, наклоны, опрокидывание); нарушения целостности конструкции опор (трещины, разломы, раскрытие швов и т. д.). Повреждения обоих видов нередко возникают одновременно.

Наиболее характерным повреждением устоев является их скольжение (сдвиг) в сторону пролета, часто сопровождаемое их наклоном и осадкой. Такие повреждения весьма распространены, особенно при наличии вокруг фундаментов устоев слабых глинистых грунтов; в единичных случаях деформации устоев могут происходить при землетрясениях силой от 7 баллов. Повреждения устоев являются следствием воздействия увеличившегося давления на них грунта со стороны насыпи, инерционных сил от пролетных строений и самих устоев, а иногда и в результате скольжения наклонно залегающих пластов берегового массива в сторону водотока. Перемещения устоев в сторону пролета часто бывают значительными и могут привести к полному разрушению мостов.

Характерными повреждениями промежуточных опор являются их осадки и наклоны, а иногда горизонтальные перемещения. Отмечены случаи поднятия опор относительно первоначального положения, а также их поворота в горизонтальной плоскости. Осадки и наклоны опор в большинстве случаев наблюдаются при фундаментах мелкого заложения, а также фундаментах из висячих свай, заглубленных в мелкие или пылеватые водонасыщенные пески средней плотности сложения, текучепластичные и текучие супеси, суглинки и глины. При землетрясении 9 баллов и более деформации опор достигают больших величин и являются массовыми. Установлено, что в общем случае осадки и наклоны опор уменьшаются с увеличением глубины заложения фундаментов и размеров их подошвы.

В результате землетрясения 1923 г. в Японии опоры одного моста с фундаментами мелкого заложения на песке осели на 0,5—1,5 м. При этом же землетрясении отмечены осадки фундаментов из висячих деревянных свай до 1,2 м.

В безростверковых опорах при землетрясении возникают трещины в ригелях и местах примыкания стоек к ригелю. В свайных фундаментах с высоким ростверком возникают повреждения в виде горизонтальных или косых трещин в сваях; вблизи заделки свай в ростверк раздробляется бетон, выпучиваются сжатые стержни арматуры.

Анализ характера сейсмических повреждений мостов показывает, что они являются следствием воздействия комплекса факторов, из которых наиболее важны следующие: 1) горизонтальные силы инерции (сейсмические силы), возникающие при колебательных движениях масс сооружения под воздействием колебаний грунтового основания. Эти силы в большинстве случаев считаются основной причиной повреждения сооружений; 2) вертикальные силы инерции (сейсмические силы), вызванные вертикальной составляющей сейсмических колебаний грунта. Эти силы незначительны по сравнению с основными вертикальными нагрузками сооружения, поэтому они редко являются непосредственной причиной повреждения сооружений. Однако такие силы уменьшают запасы устойчивости фундаментов опор против сдвига и опрокидывания; 3) сейсмическое горизонтальное давление грунта на устои мостов; 4) сейсмическое (гидродинамическое) давление воды на промежуточные опоры мостов; 5) значительное снижение несущей способности грунтов, особенно водонасыщенных рыхлых песков и текучих и текуче-пластичных глинистых грунтов. Из-за этого происходят большие осадки и наклоны опор мостов; 6) остаточные деформации природного рельефа в виде оползней, обвалов и т. п.; 7) смещения по плоскостям тектонических нарушений, приводящие к образованию сбросов и сдвигов.

Следует отметить, что большей частью повреждение сооружений происходит в результате одновременного воздействия нескольких из перечисленных причин.

Источник

Фундаменты при сейсмических воздействиях

Проектирование фундаментов при сейсмических воздействиях следует производить в соответствии с требованиями СП 14.13330.2011 «Строительство в сейсмических районах. Актуализированная редакция СНиП II-7-81*».

Сейсмические воздействия на фундамент обусловлены зем­летрясениями, происходящими в результате тектонических раз­ломов в земной коре. От гипоцентра во всех направлениях рас­пространяются упругие колебания, характеризуемые сейсмичес­кими волнами (продольными, поперечными и поверхностными). Сейсмические воздействия вызывают колебания зданий и соору­жений, которые приводят к появлению в элементах надземных конструкций сил инерции. На величину последних решающее влияние оказывает интенсивность землетрясения, измеряемая балльностью.

Сейсмические воздействия, как и любые динамического ха­рактера нагрузки на основания, приводят к изменению свойств грунтов: увеличивается сжимаемость, особенно несвязных грун­тов; уменьшается их предельное сопротивление сдвигу, вследствие вызванного вибрацией уменьшения трения между частицами. Импульсные воздействия средней величины могут вызвать допол­нительные осадки и просадки оснований, а импульсы значитель­ной величины – разрушение структуры грунтов, уменьшение их прочности, потерю устойчивости оснований. При определенных условиях может происходить разжижение водонасыщенных пес­чаных оснований, приводящее к полному исчерпыванию их несу­щей способности. Эти изменения строительных свойств грунтов и специфический характер взаимодействия сооружения с основа­нием определяют особенности проектирования фундаментов в условиях сейсмических воздействий.

В России принята 12-балльная шкала оценки силы землетря­сения. Вся территория России поделена на отдельные районы по сейсмичности, но даже в пределах одного района сейсмичность может быть различной в зависимости от грунтовых условий.

Во многих районах выполнено микросейсмирование (повышение или понижение сейсмичности на 1 балл, которое санкционируется Госстроем).

Сейсмичность площадки в зависимости от категории грунта приведена в табл. 5.1. Сейсмические воздействия при проектировании учитываются при интенсивности сейсмических колебаний 7, 8 и 9 баллов. При интенсивности более 9 баллов строительство возможно только по разрешению вышестоящих органов в соответствии с утвержденными требованиями.

По сейсмическим свойствам грунты разделяются на три категории:

Категория грунта по сейсмическим свойствам Сейсмичность площадки строительства, баллы при сейсмичности района
I
II
III

I категория: скальные грунты всех видов (в том числе вечномерзлые и вечномерзлые оттаявшие); невыветрелые и слабовыветрелые; крупнообломочные грунты плотные маловлажные из магматических пород, содержащие до 30 % песчано-глинистого заполнителя; выветрелые и сильновыветрелые скальные и нескальные твердомерзлые (вечномерзлые) грунты при температуре – 2 0 С и ниже при строительстве и эксплуатации по принципу 1 (сохранение грунтов основания в мерзлом состоянии);

II категория: скальные грунты выветрелые и сильновыветрелые (в том числе, вечномерзлые, кроме отнесенных к I категории); крупно-обломочные грунты (за исключением отнесенных к I категории); пески гравелистые, крупные и средней крупности, плотные и средней плотности маловлажные и влажные; пески мелкие и пылеватые плотные и средней плотности маловлажные; глинистые грунты с показателем текучести IL £ 0,5 при коэффициенте пористости с 0 С при строительстве и эксплуатации по принципу 1;

III категория: пески рыхлые независимо от влажности и крупности; пески гравелистые, крупные, средней крупности плотные и средней плотности водонасыщенные; пески мелкие и пылеватые плотные и средней плотности, влажные и водонасыщенные; глинистые грунты с показателем текучести IL > 0,5; глинистые грунты с показателем текучести IL £ 0,5 при коэффициенте пористости е ³ 0,9 для глин и суглинков и е ³ 0,7 – для супесей; вечномерзлые нескальные грунты при строительстве и эксплуатации по принципу II (допущение оттаивания грунтов основания).

При неоднородном составе грунты площадки строительства относятся к более неблагоприятной категории грунта по сейсмическим свойствам, если в пределах 10-метровой толщи грунта (считая от планировочной отметки) слой, относящийся к этой категории, имеет суммарную толщину более 5 м.

Расчет фундаментных конструкций и их оснований выполняют на основное и особое сочетание нагрузок, причем в последнее обязательно включается сейсмическая нагрузка. Расчетную сейсми­ческую нагрузку получают в результате динамического расчета всего здания на колебания и прикладывают в точках расположения масс элементов конструкций.

При динамическом расчете учитывают массу отдельных элемен­тов здания, сейсмичность района, формы собственных колебаний, особенности колебаний сооружения, тип грунтовых условий, конст­руктивное решение сооружения и характер допускаемых поврежде­ний и дефектов. После получения сейсмических нагрузок на основа­нии принципа Даламбера проводят статический расчет конструкций здания в предположении совместного действия сейсмической и ста­тической нагрузки.

Дополнительные горизонтальные нормальные и касательные на­пряжения, возникающие в основании при прохождении сейсмичес­ких волн, определяют по формулам:

; , (5.10)

где kс – коэффициент сейсмичности (при 7 баллах kс = 0,025; при 8 баллах – 0,05 и при 9 баллах – 0,1); γ – удельный вес грунта; Сp и Сs – соответственно скорости распространения продольных и поперечных сейсмических волн; Т0 = 0,5 – период скорости сейс­мических колебаний, с.

Сейсмические инерционные нагрузки, действующие на фунда­мент во время землетрясения, определяют по формуле

(5.11)

где Gk – вес элемента сооружения, отнесенный к точке к; γn – ко­эффициент, зависящий от класса сооружения (принимается в преде­лах 1–1,5); – коэффициент динамичности; – коэффициент, учитывающий форму колебаний.

При проектировании и строительстве в сейсмических районах глубину заложения фундаментов в грунтах I и II категорий назнача­ют как для несейсмических районов, но не менее 1 м; грунты III категории требуют предварительного искусственного улучшения.

Фундаменты зданий и их отдельных отсеков рекомендуется за­кладывать на одном уровне во избежание изменения частоты со­бственных колебаний. В зданиях повышенной этажности следует увеличивать глубину заложения с помощью устройства дополни­тельных подземных этажей.

При прохождении сейсмических волн поверхность грунта может испытывать растяжение и сжатие в различных направлениях, что может вызвать подвижку фундаментов относительно друг друга, поэтому для исключения подвижки и устойчивости фундаментов рекомендуется возводить сплошные плитные фундаменты или не­прерывные фундаменты из перекрестных лент (рис. 5.3, а), устра­иваемых в сборном или монолитном варианте. Для усиления сбор­ных фундаментов по верху подушки укладывают арматурные сетки и устраивают перевязку блоков в углах и пересечениях, а при сейсмичности 9 баллов армируют все сопряжения стен подвалов. Фундаменты каркасных зданий допускается устанавливать на от­дельные фундаменты, которые соединяются друг с другом железо­бетонными вставками (рис. 5.3, б).

Рис. 5.3. Схемы фундаментов в сейсмических районах

Для предотвращения подвижки здания по обрезу фундамента гид­роизоляцию стен необходимо выполнять в виде цементного слоя. Применение гидроизоляции на битумной основе не разрешается.

При использовании свайных фундаментов необходима жесткая заделка свай в непрерывный ростверк для восприятия горизон­тальных усилий, возникающих при землетрясениях, при этом следу­ет стремиться опирать нижние концы свай на плотные грунты. Влияние сейсмических воздействий на работу свайных фундаментов учитывают с помощью понижающих коэффициентов условий рабо­ты, при расчете несущей способности основания по боковой поверх­ности и под острием сваи.

Самыми неблагоприятными основаниями являются водонасыщенные пески, способные разжижаться в условиях сейсмических воздействий и приводить к провальным осадкам зданий, поэтому их следует использовать в качестве оснований только после предвари­тельного уплотнения вибрированием, песчаными сваями или каким-либо другим способом.

Проектирование и устройство фундаментов с учетом сейсмичес­ких воздействий гарантируют сохранность сооружения при условии, если и надземная часть здания возведена с учетом данных воздейст­вий.

Источник

Оцените статью