Возведение сооружений методом опускного колодца
Метод опускного колодца при строительстве сооружений водопровода и канализации используют при устройстве заглубленных помещений насосных станций, стволов, шахт, водозаборов, а также различных подземных опор и др. Сущность метода состоит в том, что первоначально на поверхности земли возводят стены колодца, оборудованные ножевой частью, а затем внутри его разрабатывают грунт в направлении от центра к периметру стен. За счет подработки грунта стены утрачивают опору с внутренней стороны и под действием собственной тяжести колодец опускается, выдавливая грунт (благодаря специальной конструкции ножа) внутрь.
Опускные колодцы различаются:
по материалу — бетонные, железобетонные, металлические, каменные и деревянные;
по форме (в плане) — круглые, овальные и прямоугольные (рис. 8.2, а); наиболее экономичны колодцы круглой формы; по виду и способу устройства железобетонных конструкций — из монолитного железобетона, сборных тонкостенных панелей и пустотелых блоков;
по технологии опускания — насухо, с водоотливом или искусственным понижением уровня грунтовых вод и без водоотлива с разработкой грунта под водой.
Первым этапом сооружения колодца является устройство основания под нож, которое гарантирует надежное опирание последнего при возведении стен. Существуют основания различных видов. Наиболее распространенный вид — деревянные подкладки на песчаной подушке (рис. 8.2, б). Толщина подкладок около 20 см, длина 2. 3,5 м.
Рис. 8.2. Опускные колодцы
а — формы (в плане): I — круглые; II — прямоугольные; III — с закругленными боковыми стенками; 1 — стенка; 2 — днище; 3 — поперечная стенка; б — подготовка основания под нож стенки: 1 — нож колодца; 2 — деревянные подкладки; 3 — банкетка ножа; в —схема бетонирования стены; 1,3 — соответственно наружная и внутренняя опалубки стены; 2 — приемная воронка для бетонной смеси; 4 — хобот для подачи бетонной смеси; 5 — армокаркас; 6 — щебень; 7 — конструктивная опалубка; г — устройство основания под нож стен, выполненных из сборных панелей: 1 — нож; 2 — опорные стойки; 3 — уплотненный щебень; 4 — монтажные петли; 5 — опорное кольцо из сборных железобетонных блоков; 6 — обратная песчаная засыпка; 7 —форшахта из бетона; 8 — разделительные доски; д — схема расположения фиксированных зон: 1 — колодец; 2 — фиксированные зоны; 3 — берма; 4 — оси фиксированных зон; с схема разработки грунта в колодце насухо: 1 — колодец; 2 —башенный кран; 3, 4 — экскаваторы (прямая и обратная лопата); 5 —тиксотропная рубашка; ж — устройство кессона: 1 — шлюзовой аппарат; 2 — гидроизоляция; 3 —надкессонное строение; 4 — кессонная камера
При монолитном варианте бетонирование стен ведут по ярусам (рис. 8,2, в). Высота яруса определяется из условий допустимого удельного давления на грунт под ножевой частью. Практически колодцы высотой до 10 м бетонируют в один ярус, более высокие — в несколько ярусов при их высоте 6. 8 м. Укладку бетона очередного яруса производят после набора бетоном предыдущего яруса прочности 1,2. 1,5 МПа.
Устройство стен из сборных железобетонных плоских панелей длиной до 12 м, шириной 1,4. 2 м и толщиной 0,4. 0,8 м предусматривает создание специального основания, выполненного в предварительно отрытой траншее глубиной до 0,8 м (рис. 8.2, г). Вначале бетонируют форшахту, затем отсыпают песчаную подушку (с послойным уплотнением), укладывают сборные плиты опорного кольца и устраивают щебеночное основание. После этого устанавливают стеновые панели, соединяя их между собой пластинами (на сварке), и бетонируют вертикальный стык. При устройстве колодцев глубиной более 12 м стены наращивают такими же панелями, но без ножевой части.
По окончании устройства стен приступают к погружению колодца под действием его собственной силы тяжести. При опускании колодца насухо применяют три схемы разработки и выдачи грунта из колодца.
По первой схеме грунт разрабатывают бульдозерами, экскаваторами на гусеничном ходу и выдают на поверхность кранами в бадьях. При внутреннем диаметре колодца до 20 м используют экскаваторы с объемом ковша 0,25. 0,4 м 3 , свыше 20 м — с объемом ковша 0,65. 1,25 м 3 . В колодцах диаметром более 32 м работы ведут не менее двух экскаваторов. Бульдозер используют для срезки и сброса грунта в отвалы для удобства погрузки его в бадьи. Грунт разрабатывают в следующей последовательности: первоначально — в средней части колодца на глубину 1,5. 4 м (в зависимости от размера колодца), оставляя вблизи ножа берму шириной 1. 3 м; далее, уточнив места и размеры фиксированных зон (рис. 8.2, д), производят послойную (10. 15 см) срезку грунта бермы на участках между фиксированными зонами (момент начала погружения колодца). Если после полной разработки этих участков бермы (до уровня банкетки ножа) колодец не опускается, то начинают разработку грунта фиксированных зон. При первых подвижках колодца переходят к разработке грунта в средней части и т. д. По мере погружения колодца размеры фиксированных зон уменьшаются до полного исключения, при необходимости разрабатывают (вручную) грунт под ножевой частью.
Грунт грузят в саморазгружающиеся бадьи вместимостью от 2 до 5 м краном соответствующей грузоподъемности, поднимающим их на поверхность (рис. 8.2, е). Количество кранов определяется из расчета обеспечения требуемой производительности работы экскаватора. Поднятый на поверхность грунт грузят в самосвалы и отвозят в отвал или для других целей.
По второй схеме предусматривается разработка грунта грейфером. Для этого используют двух-, трех- и четырехлопастные грейферы вместимостью 0,5. 1,5 м 3 . Грейферами разрабатывают грунт I и II групп. Для грунтов III группы используют грейферы вместимостью более 1 м . Последовательность разработки грунта кольцевыми траншеями — от центра к стенам или радиальными траншеями от середины поочередно к дальней и ближней стенкам относительно крана.
При третьей схеме разработки грунта используют гидромеханизированный способ. Возможны три варианта рассматриваемого способа: разработка гидромониторами и транспортировка на поверхность земснарядами или углесосами; разработка гидромониторами и подъем на поверхность гидроэлеваторами; разработка экскаватором и выдача на поверхность средствами гидромеханизации.
Опускание колодца без водоотлива производят при большом притоке воды, когда выполнять водопонижение экономически нецелесообразно. В этом случае грунт разрабатывают и подают из-под воды грейфером.
При строительстве колодца в сильно обводненных грунтах или вблизи существующих зданий и сооружений, когда есть опасность выноса или выпора грунта из-под подошвы фундаментов, применяют кессон (рис. 8.2, ж). Кессонную камеру устраивают из железобетона (в редких случаях — из металла). Высота камеры от банкетки до потолка не менее 2,2 м. Плотный грунт в кессонной камере разрабатывают вручную с использованием отбойных молотков, пневмобуров и взрывного способа, а слабые — средствами гидромеханизации. При ручной разработке первоначально по контуру камеры на некотором расстоянии от банкетки отрывают траншею шириной около 1 м на глубину посадки кессона, но не более 40 см. Затем разрабатывают грунт между траншеей и ножом, оставляя перемычки нетронутого грунта. После посадки кессона (на 30. 40 см) ведут послойную разработку грунта центральной части, а также новых траншей, затем цикл повторяется.
Во всех случаях погружение колодца сопровождается преодолением сил трения на поверхности стен. Для уменьшения этих сил применяют способ погружения в тиксотропных рубашках. Принцип его заключается в том, что ножевую часть колодца делают с уступом наружу на 10. 15 см относительно вышерасположенной стены, вследствие чего при погружении в грунт вокруг стен образуется полость. Чтобы грунт не обрушивался, полость заполняют глинистым раствором с тиксотропными свойствами. В результате трение наиболее значительной величины имеет место только на наружной боковой поверхности ножа. Преимущество такого способа погружения колодца способствует значительному уменьшению толщины стен; возможности применения сборных стеновых панелей; отсутствию опасности «зависания» колодца; легкому исправлению возможных кренов колодца при опускании.
Источник
ВОПРОС 5. Виды фундаментов глубокого заложения (опускные колодцы, кессоны, тонкостенные оболочки и буровые опоры).
При залегании прочных грунтов на значительной глубине, когда устройство фундаментов в открытых котлованах становится трудновыполнимым и экономически невыгодным, а применение свай не обеспечивает необходимой несущей способности, прибегают к устройству ФГЗ. Необходимость устройства фундаментов глубокого заложения может быть вызвана и особенностями самого сооружения, например когда оно должно быть опущено на большую глубину – подземные гаражи и склады, ёмкости очистных, водопроводных и канализационных сооружений, здания насосных станций, водозаборы, глубокие колодцы для зданий дробления руды, непрерывной разливки стали и многие другие.
В настоящее время применяют следующие типы фундаментов глубокого заложения: опускные колодцы и кессоны, тонкостенные оболочки, буровые опоры и фундаменты, возводимые методом стена в грунте.
Опускные колодцы.
Представляют собой замкнутую в плане и открытую сверху и снизу полую конструкцию, бетонируемую или собираемую из сборных элементов на поверхности грунта и погружаемую под действием собственного веса или дополнительной пригрузки по мере разработки грунта внутри нее (рис.13.1 и 13.2.).
Рис.13.1 Последовательность устройства опускного колодца:
а – изготовление первого яруса опускного колодца на поверхности грунта; б – погружение первого яруса опускного колодца в грунт; в – наращивание оболочки колодца; г – погружение колодца до проектной отметки; д – заполнение бетоном полости опускного колодца в случае использования его как фундамента глубокого заложения
Рис.13.2. Формы сечений опускных колодцев в плане:
а – круглая; б – квадратная; в – прямоугольная; г – прямоугольная с поперечными перегородками; д – с закругленными торцевыми стенками
· Форма колодца в плане определяется конфигурацией проектируемого сооружения См. рис.13.2.
Наиболее рациональной является круглая форма, т.к. стенка круглого колодца работает только на сжатие, и при заданной площади основания обладает наименьшим наружным периметром, что уменьшает силы трения по их боковой поверхности, возникающие при погружении. Плоские же стенки опускных колодцев в основном будут работать на изгиб (что далеко не выгодно), но с другой стороны прямоугольная и квадратная форма позволяет более рационально использовать площадь внутреннего помещения.
В любом случае очертание колодца должно быть в плане симметричным, т.к. всякая асимметрия осложняет его погружение (прекосы, отклонения).
Конструкционные материалы для опускных колодцев:
— каменная или кирпичная кладка;
— ж/б- наиболее распространен:
1.Монолитные (только когда форма колодца в плане имеет сложное очертание, нет возможности изготовления сборных элементов, при проходке скальных грунтов и грунтов с большим числом валунов).
2.Сборные (наибольшее предпочтение)
· Погружению колодца в основание сопротивляются силы трения стен колодца о грунт. Для уменьшения трения колодцам придают коническую или цилиндрически уступчатую форму, с использованием тиксотропной суспензии. Оболочка опускного колодца из монолитного ж/б состоит из двух основных частей : 1 – ножевой; 2 – собственно оболочки. См. рис. 13.3.
Рис.13.3. Форма вертикальных сечений монолитных опускных колодцев:
а – цилиндрическая; б – коническая; в – цилиндрическая ступенчатая; 1 – ножевая часть опускного колодца; 2 – оболочка опускного колодца; 3 – арматура ножа колодца
· Ножевая часть шире стены оболочки на 100…150мм со стороны грунта.
· Толщина стен монолитных колодцев определяется из условия создания веса, необходимого для преодоления сил трения.
· Бетон должен быть прочным, плотным (вес) и иметь высокую водонепроницаемость – В35.
· Монолитные ж/б колодцы изготавливают непосредственно над местом их погружения на специально изготовленной выровненной площадке. При hк>10м его бетонирование ведется отдельными ярусами, последовательно. К опусканию преступают только после набором бетоном 100% прочности, что непроизводительно (потеря времени).
К недостаткам монолитных ж/б опускных колодцев также следует отнести:
— большой расход материалов, не оправданный требованиями прочности;
— значительная трудоемкость, за счет их изготовления полностью на строительной площадке;
· Преимущества монолитных колодцев:
— возможность придания им любой формы;
— отсутствие (как правило) опасности всплытия
· Из сборных опускных колодцев наибольшее распространение получили:
— колодцы из пустотелых прямоугольных элементов
Кессоны.
В сильно обводненных грунтах, содержащих прослойки скальных пород или твердых включений (валуны, погребенную древесину и т.д.) погружение опускных колодцев по схеме «насухо» требует больших затрат на водоотлив, а разработка грунта под водой невозможна из-за наличия в грунте твердых включений.
В этом случае используется кессонный метод устройства фундаментов глубокого заложения, который был предложен во Франции в середине 19в.
Кессон схематически представляет собой опрокинутый вверх днищем ящик, образующий рабочую камеру, в которую под давлением нагнетается сжатый воздух, уравновешивающий давление грунтовой воды на данной глубине, что не позволяет ей проникать в рабочую камеру, благодаря чему разработка грунта ведется насухо без водоотлива.
Рис.13.9. Схема устройства кессона:
а – для заглубленного помещения; б – для глубокого фундамента; 1 – кессонная камера; 2 – гидроизоляция; 3 – надкессонное строение; 4 – шлюзовой аппарат; 5 – шахтная труба
Метод является более дорогостоящим и сложным, поскольку требует специального оборудования. Кроме того, этот способ связан с пребыванием людей в зоне повышенного давления воздуха, что значительно сокращает продолжительность рабочих смен (до 2 часов при 350…400кПа(max)) при максимальной глубине 35-40м.
В связи с вышесказанным кессоны применяют значительно реже других типов фундаментов глубокого заложения.
Кессонная камера, высота которой по санитарным нормам принимается не менее 2,2 м, выполняется из ж/б и состоит из потолка и стен, называемых консолями.
Способ погружения кессона аналогичен опускному колодцу. Глубину погружения кессона и его внешние размеры определяют так же, как и для опускных колодцев.
Шлюзовой аппарат, соединенный с кессонной камерой шахтными трубами, предназначен для шлюзования людей и грузов при их спуске в кессонную камеру и при подъеме из нее.
Грунт в камере кессона разрабатывается или ручным или гидромеханическим способом.
Имеется опыт разработки грунта в кессонной камере вообще без присутствия в ней рабочих, когда все управление гидромеханизмами выносится за ее пределы. Такой способ опускания кессона называется слепым.
Тонкостенные оболочки.
Тонкостенная оболочка представляет собой пустотелый цилиндр из обычного или предварительно напряженного ж/б. Они начали широко применяться только с появлением мощных вибропогружателей, позволяющих погружать в грунт элементы больших размеров.
Рис.13.10. Конструкция типовой оболочки диаметром 1,6м
Оболочки выпускаются секциями длиной от 6 до 12м и наружным диаметром от 1 до 3м. Длина секций кратна 1м, толщина стенок составляет 12см. На рис 13.10 в качестве примера показана секция оболочки диаметром 1,6м.
Наилучшими типами стыков являются сварной, применяемый для предварительной сборки на строительной площадке, и фланцевый на болтах, используемый для наращивания оболочек в процессе погружения. (рис.13.11)
Рис.13.11. Стыки секций оболочек:
а – сварной стык; б – фланцево-болтовой стык; 1 – стержень продольной арматуры; 2 – ребро; 3 – обечайка; 4 – сварной шов; 5 – стальной стержень; 6- болт
Погружение оболочек в грунт осуществляется, как правило, вибропогружателями. Для облегчения погружения, а также для предотвращения разрушения оболочки при встрече с твердыми включениями конец нижней секции снабжается ножом.
Обычно для повышения сопротивления оболочки действию значительных внешних усилий обычно ее полость после погружения до заданной глубины заполняется бетоном. При погружении в песчаные грунты внизу оставляют уплотненное песчаное ядро высотой не менее 2м. (рис.13.12а)
Рис.13.12 Конструкция сборных железобетонных оболочек:
а – оболочка с уплотненным песчаным ядром; б – усиленная оболочка с несущей диафрагмой; в – оболочка, заделанная в скалу; г – оболочка с уширенной пятой; 1 – оболочка; 2 – бетонное заполнение; 3 – нож; 4 – несущая диафрагма; 5 – арматурный каркас; 6 – буровая скважина в скальной породе; 7 – уширенная пята
Благодаря этому сохраняется естественная плотность песчаного грунта в основании оболочки, что обеспечивает лучшее использование его несущей способности.
Наиболее рационально тонкостенные оболочки применять при больших вертикальных и горизонтальных нагрузках. Такие сочетания нагрузок наиболее характерны для мостов, гидротехнических и портовых сооружений.
Буровые опоры.
Буровые опоры представляют собой бетонные столбы, которые возводят путем укладки бетонной смеси в предварительно пробуренные скважины. Укладка бетонной смеси производится под защитой либо глинистого раствора, либо обсадных труб, извлекаемых при бетонировании.
Технология устройства буровых опор та же, что и буронабивных свай. По существу, они представляют собой буронабивные сваи большого сечения (d >80см).
Нижние концы буронабивных опор обязательно доводят до плотных грунтов, поэтому они работают как стойки. Иногда их делают с уширенной пятой.
Буровые опоры обладают значительной несущей способностью (e1000т) и рассчитываются как сваи-стойки.
Стена в грунте.
Этот способ предназначен для устройства фундаментов и заглубленных в грунт сооружений (рис. 13.13).
Рис.13.13. Конструкции, сооружаемые способом «стена в грунте»: а – котлованы в городских условиях; б – подпорные стенки; в – тоннели; г – противофильтрационные диафрагмы; д – подземные резервуары
Способ заключается в том, что сначала по контуру будущего сооружения в грунте отрывается узкая глубокая траншея (b=60…100 см, Hd40…50 м) с помощью жесткого грейфера или механизированного траншеекопателя на проектную глубину с врезкой в водоупор, которая затем заполняется бетонной смесью или сборными железобетонными элементами.
Возведенная таким образом стена может служить конструктивным элементом фундамента, ограждением котлована или стеной заглубленного помещения.
Помимо заглубленных сооружений способом «стена в грунте» можно устраивать противофильтрационные завесы. Устройство «стены в грунте» наиболее целесообразно в водонасыщенных грунтах при высоком уровне подземных вод. Способ особенно эффективен при заглублении стен в водоупорные грунты, что позволяет полностью отказаться от водоотлива или глубинного водопонижения.
Существенным достоинством способа является возможность устройства глубоких котлованов и заглубленных помещений вблизи существующих зданий и сооружений без нарушения их устойчивости, что особенно важно при строительстве в стесненных условиях, а также при реконструкции сооружений.
Технология устройства «стены в грунте».
1. Сооружение «стена в грунте» начинается с устройства сборной или монолитной форшахты, которая служит направляющей для землеройных машин, опорой для подвешивания армокаркасов, бетолитных труб, сборных железобетонных панелей и т.п. и обеспечивает устойчивость стенок в верхней части.
2. Отрывка котлована отдельными захватками. Откопав первую захватку, на всю глубину стены по ее торцам устраивают ограничители, арматурный каркас и укладывают бетонную смесь.
3. Затем переходят к захватке «через одну», а после ее устройства – к промежуточной и т.д., в результате получается сплошная стена (рис. 13.14).
Рис.13.14. Последовательность возведения «стены в грунте»:
а – первая очередь работ; б – вторая очередь работ; 1 – форшахта; 2 – базовых механизм; 3 – бетонолитная труба; 4 – глинистый раствор; 5 – грейфер; 6 – траншея под одну захватку; 7 – арматурный каркас; 8 – бетонная смесь; 9 – забетонированная секция; 10 – готовая «стена в грунте»
Такой метод называется методом последовательных захваток или секционным методом.
Для удержания стен захватки против обрушения по мере углубления в нее подливают тиксотропный глинистый раствор.
После возведения «стены в грунте» по всему периметру сооружения (т.е. конструкция замыкает в плане будущее сооружение) поэтапно удаляют грунт из внутреннего пространства. При необходимости на каждом этапе по периметру устраивают грунтовые анкера или распорки. Если крепления не изготавливаются, то устойчивость стены при удалении грунта обеспечивается ее заделкой в основание. После полного удаления грунта из внутреннего пространства до проектной отметки возводят внутренние конструкции.
Последнее изменение этой страницы: 2017-03-15; Просмотров: 1381; Нарушение авторского права страницы
Источник