Фундамент платформы перекрыт осадочным чехлом

ОСА́ДОЧНЫЙ ЧЕХО́Л

  • В книжной версии

    Том 24. Москва, 2014, стр. 508

    Скопировать библиографическую ссылку:

    ОСА́ДОЧНЫЙ ЧЕХО́Л (плат­фор­мен­ный че­хол, плит­ный че­хол), тол­ща гл. обр. оса­доч­ных, сла­бо дис­ло­ци­ро­ван­ных гор­ных по­род, со­став­ляю­щих верх­ний струк­тур­ный ярус плат­форм . В со­ста­ве О. ч. пре­об­ла­да­ют кон­ти­нен­таль­ные и мел­ко­вод­но-мор­ские пес­ча­но-гли­ни­стые, кар­бо­нат­ные и га­ло­ген­ные (эва­по­ри­то­вые) от­ло­же­ния, воз­раст ко­то­рых ме­нее 1,7 млрд. лет; в ря­де рай­онов (напр., на Си­бир­ской, Ин­до­стан­ской плат­фор­мах) че­хол вклю­ча­ет по­кро­вы пла­то­ба­заль­тов с сил­ла­ми и дай­ка­ми до­ле­ри­тов и габб­ро-диа­ба­зов ( трап­пы ) или ще­лоч­ные ба­заль­ты, ту­фы. B ос­но­ва­нии чех­ла ино­гда при­сут­ст­ву­ют вул­ка­нич. об­ра­зо­ва­ния ки­сло­го со­ста­ва (Aлданский щит и др.). От­ло­же­ния O. ч. ос­лож­не­ны лишь по­ло­ги­ми струк­ту­ра­ми плат­фор­мен­но­го ти­па – мо­но­кли­на­ля­ми , ан­тек­ли­за­ми и си­не­кли­за­ми ; в не­ко­то­рых мес­тах от­ме­ча­ют­ся зо­ны внут­ри­плат­фор­мен­ных дис­ло­ка­ций плат­фор­мен­но­го чех­ла (напр., Ан­га­ро-Лен­ская зо­на на Си­бир­ской плат­фор­ме), ва­лы (напр., Ок­ско-Цнин­ский вал на Вос­точ­но-Ев­ро­пей­ской плат­фор­ме). Мощ­ность О. ч. в боль­шин­ст­ве слу­ча­ев не­боль­шая, из­ме­ня­ет­ся от ме­нее 2 км в сво­дах ан­тек­лиз до 3–5 км и бо­лее в центр. час­тях си­нек­лиз; ис­клю­че­ние со­став­ля­ют глу­бо­кие впа­ди­ны плат­форм (напр., При­кас­пий­ская си­нек­ли­за на Вос­точ­но-Ев­ро­пей­ской плат­фор­ме), где мощ­ность чех­ла мо­жет дос­ти­гать 20 км и бо­лее. От­ло­же­ния плат­фор­мен­но­го чех­ла срав­ни­тель­но мед­лен­но из­ме­ня­ют свою мощ­ность и фа­ции по пло­ща­ди. От ниж­не­го струк­тур­но­го яру­са (фун­да­мен­та плат­фор­мы) O. ч. обыч­но от­де­лён по­верх­но­стью рез­ко­го ре­гио­наль­но­го не­со­гла­сия. Не­ред­ко ме­ж­ду фун­да­мен­том и чех­лом рас­по­ла­га­ют­ся от­ло­же­ния про­ме­жу­точ­но­го яру­са, что осо­бен­но свой­ст­вен­но мо­ло­дым плат­фор­мам; в этом слу­чае гра­ни­ца, раз­де­ляю­щая поро­ды O. ч. от под­сти­лаю­щих об­ра­зо­ва­ний, ста­но­вит­ся ме­нее от­чёт­ли­вой. К О. ч. при­уро­че­ны ме­сто­ро­ж­де­ния неф­ти и при­род­но­го го­рю­че­го га­за, ка­мен­но­го и бу­ро­го ýг­лей, го­рю­чих слан­цев, тор­фа, оса­доч­ных руд же­ле­за, бок­си­тов, фос­фо­ри­тов, ка­мен­ной и ка­лий­ных со­лей, разл. при­род­ных стро­ит. ма­те­риа­лов и сы­рья для их про­из-ва.

    Читайте также:  Типы свайно ростверкового фундамента

    Источник

    Фундамент платформы перекрыт осадочным чехлом

    Как построен осадочный чехол платформы

    Наиболее древние отложения платформенного чехла- породы верхнекарельского комплекса протерозоя — залегают в узких грабенах фундамента Балтийского щита. Здесь же находятся и отложения иотния. Характерно, что низы чехла Восточно-Европейской платформы прорваны интрузией гранитов рапакиви, возраст которых 1,61-1,67 млрд. лет. В закрытых районах платформы низы чехла изучены лишь по данным бурения — это так называемый рифейский комплекс. Сложен он обломочными красноцветными породами- гравелитами, песчаниками, аргиллитами, иногда с прослоями базальтов и вулканических туфов. Рифейские отложения развиты в пространстве спорадически (пятнисто) и приурочены опять-таки к грабенам фундамента, которые называются авлакогенами. Такая особенность залегания ранних комплексов чехла позволяет рассматривать начальный этап развития платформы как авлакогенную, или доплитную, стадию.

    Начиная с вендского времени, осадочный чехол почти полностью перекрывает территорию Восточно-Европейской платформы, исключая Балтийский и Украинский щиты и некоторые районы Тиманского кряжа. Фундамент платформы испытывает почти повсеместно тенденцию к прогибанию, что в конечном итоге приводит к широкому развитию осадочного чехла и к образованию плиты. Поэтому-то второй этап в геологической истории развития платформы рассматривают как плитную стадию.

    В составе осадочного чехла можно выделить отложения всех возрастов палеозойской, мезозойской и кайнозойской эр. Наиболее широко в пространстве распространены породы палеозоя. Сложены они преимущественно морскими осадками: песчаниками, глинами, известняками, доломитами. В верхней части разреза (пермь) появляются континентальные красноцветные песчаники и конгломераты, а также каменная соль, гипс и ангидрит. Общая мощность палеозойских образований 3,0-3,5 км, а в Прикаспии она достигает 10 км и более.

    Мезозойские отложения выполняют в основном южные и крайние северо-восточные районы платформы, образуя небольшие пятна и в центре ее. Начинаются они с красноцветных триасовых песчаников, далее идут преимущественно морские юрские и меловые слои, представленные песчаниками, глинами, известняками. Суммарная мощность отложений в среднем 0,5 — 2,0 км; в Прикаспии же только толща триаса составляет почти 3 км.

    Кайнозойские породы известны лишь на юге платформы — это морские пески, глины и органогенные известняки палеогеновой и неогеновой систем. Широко распространены в пространстве четвертичные осадки (отложения рек, озер, ледников). Общая мощность отложений кайнозоя 1,0 км, в Прикаспии — более 3,0 км.

    Как видим, разрез осадочного чехла Восточно-Европейской платформы сложен породами преимущественно морскими. Мощность его не превышает 3-5 км. Исключение составляет Прикаспийская низменность, где мощность чехла увеличивается до 20-22 км, а в его составе появляется мощная толща каменной соли раннепермского возраста.

    Тектоническое строение Восточно-Европейской платформы определяется тремя крупнейшими элементами: Балтийским и Азово-Подольским щитами и Русской плитой. Первые два элемента, как структуры фундамента, рассмотрены выше. Остановимся на строении Русской плиты, занимающей большую часть территории платформы. В тектоническом строении ее принимает участие гряды, массивы, антеклизы, своды, валы, синеклизы, авлакогены, впадины и т. п. (рис. 5). Характерно, что заложение и развитие структурных элементов осадочного чехла платформы совершенно не согласуется с положением структурных элементов геосинклинального этапа развития. Из рис. 6 видно, что структуры фундамента, т. е. геосинклинальные структуры, вытянуты в субмеридиональном направлении, а платформенные элементы имеют близширотную ориентацию. Несовпадение структурных планов геосинклинального и платформенного этажей — типичная черта докембрийских платформ.


    Рис. 5. Схема региональной тектоники Восточно-Европейской платформы. 1 — щиты: А — Балтийский, Б — Украинский, или Азово-Подольский; 2 — региональные поднятия: I — Тиманская гряда, II — Воронежский массив, III — Белорусский массив, IV — Волго-Уральская антеклиза; 3 — границы синеклиз; 4 — передовые прогибы: а — Предуральский, б — Преддонецкий, в — Предкарпатский; 5 — южная граница платформы; 6 — Урал.

    Наиболее крупными положительными тектоническими элементами Русской плиты являются Тиманская гряда, Воронежский и Белорусский массивы, Волго-Уральская антеклиза. Строение последней изучено лучше других. Она представляет собой сложно построенную положительную структуру, состоящую из поднятий и депрессий. Мощность чехла соответственно колеблется от 1-1,5 км до 4-6 км. К поднятиям антеклизы относятся Токмовский, Котельничский, Татарский и Оренбургский своды; к депрессиям — Бузулукская впадина, Верхнекамский и Серноводско-Абдулинский прогибы. Строение других положительных структурных элементов Русской плиты во многом сходно со строением Волго-Уральской антеклизы. Отличаются они лишь более приподнятым залеганием фундамента, а в ряде мест и выходом его на дневную поверхность, в связи с чем выделяются как массивы и гряды, хотя принципиальная разница между терминами «массив» и «антеклиза» отсутствует.

    Крупные отрицательные структуры — Московская, Мезенская, Балтийская, Печорская, Украинская и Прикаспийская синеклизы и Рязано-Саратовский прогиб — занимают большую часть территории Русской плиты и характеризуются максимальной мощностью чехла. Геологическое строение их весьма разнообразно. В нем принимают участие поднятия (своды, валы), впадины и прогибы.

    Тектоническое строение краевых областей Восточно-Европейской платформы осложнено рядом передовых прогибов, имеющих либо герцинский (Предуральский прогиб), либо альпийский (Предкарпатский прогиб) возраст заложения. Часто вместе с прогнутыми моноклинальными склонами платформы (перикратонными опусканиями) эти прогибы образуют краевые системы (по Е. В. Павловскому) — области наиболее погруженного залегания фундамента.

    При рассмотрении тектонического строения Восточно-Европейской платформы в региональном плане привлекает внимание закономерная группировка крупных поднятий в пояса поднятий и крупных депрессий в пояса прогибаний (см. рис. 5). Так, на северо-западе платформы располагается крупнейшая область поднятий — Балтийский щит, в пределах которого осадочный чехол практически полностью отсутствует. К востоку и югу от него в виде дуги прослеживается внутренний региональный пояс прогибания, включающий Мезенскую, Московскую и Балтийскую синеклизы. Фундамент здесь погружен на глубину до 3,5 км. Далее к востоку и югу пояс прогибания сменяется новым региональным поясом поднятий, в состав которого входят Тиманская гряда, Волго-Уральская антеклиза, Воронежский массив, Азово-Подольский щит и Белорусский массив. В ряде мест этого пояса фундамент выходит на дневную поверхность, в большинстве случаев он погружен в среднем до глубины 1 км. Пояс поднятий к востоку и югу сменяется окраинным региональным поясом прогибания, охватывающим Печорскую синеклизу, Предуральский передовой прогиб, Прикаспийскую и Украинскую синеклизы. Этот пояс прогибания характеризуется наиболее глубоким залеганием фундамента — до 20 км.


    Рис. 6. Простирание структурных элементов (заштрихованы) в раннепротерозойское время на юге Восточно-Европейской платформы (по В. Б. Сологубу, А. В. Чекунову и Е. В. Павловскому) и положение современных структур (выделены крапом).

    Образование региональных поясов поднятий и опусканий, вероятно, обусловлено существованием сети глубинных разломов, разбивающих фундамент на геоблоки. Активно развивавшиеся в палеозое геосинклинальные системы, окаймлявшие Восточно-Европейскую платформу с востока и юга, втягивали в погружение и прилегающие области докембрийской платформы. Причем наиболее интенсивное прогибание испытывал край платформы, непосредственно контактирующий с геосинклиналями, что предопределило максимальное погружение фундамента окраинного регионального пояса прогибания. Таким образом, произошло ступенчатое погружение фундамента Восточно-Европейской платформы по системе разломов от Балтийского щита в сторону палеозойских геосинклиналей Урала и Предкавказья, в этом же направлении отмечается и нарастание мощности осадочного чехла платформы от 0 до 20 км.

    В тектоническом строении осадочного чехла Восточно-Европейской платформы, так же как и в строении фундамента, большую роль играют разломы. Несмотря на то, что в осадочный чехол «пробиваются» далеко не все разломы фундамента, все же влияние их на формирование структур чехла весьма велико. Мы уже указывали на это при рассмотрении региональных поясов поднятий и опусканий. Прослеживается влияние разломов и на образование подчиненных поясам структурных элементов. Чаще всего разломы выступают как естественные границы между поднятиями и опусканиями. В качестве одного из многочисленных примеров этого рассмотрим следующий.

    Долгое время геологи спорили о границах Прикаспийской синеклизы. Одни считали, что границей является крупный разлом, окаймляющий депрессию по всему периметру; другие утверждали, что граница синеклизы тектонически не выражена и проводится по появлению в разрезе мощных соленосных толщ. Дешифрование сканерного изображения Нижнего Поволжья — пограничного района между Прикаспийской синеклизой и Воронежским массивом, полученного с американского спутника «Ландсэт-I» в июне — июле 1973 г., помогло решить затянувшуюся дискуссию. П. В. Флоренский и А. С. Петренко, анализировавшие космические снимки, выделили в этом районе целую серию разломов, ориентированных преимущественно в северо-западном и северо-восточном направлениях (рис. 7). Границей, разделяющей различно ориентированные разломы, оказалась долина Волги. Эти авторы пишут, что «. разломы образуют как бы ветви елки, стволом которой является долина Волги. «. Итак, разломная граница синеклизы доказана. Более того, напрашивается еще один интересный вывод о связи глубинной структуры коры с гидросетью, ведь неспроста Волга течет вдоль крупных разломов.


    Рис. 7. Сканерное изображение Нижнего Поволжья, полученное с американского спутника ‘Ландсэт-1’ (а) и схема разломов этого района (б), отдешифрированных по космическому снимку (упрощено). 1 — пойма Волги; 2 — разломы, хорошо и слабо выраженные.

    Кроме функции разграничения разломы выполняют также роль структурно-формирующего фактора. В чехле над разломами возникают флексурно-разрывные зоны, структурные террасы, валы и локальные поднятия.

    Развитие разломов Восточно-Европейской платформы имеет сложную историю. Исследователи (А. М. Бельков, 1972 г.) выделяют различные категории разломов. Разломы, закончившие свое развитие в дорифейское время, можно рассматривать как разломы, не развивавшиеся на платформенном этапе. Разломы раннего проявления развивались только в начальный период формирования чехла (рифей, ранний палеозой). Третьи разломы возникли и развивались лишь в альпийскую эпоху тектогенеза — это разломы позднего проявления. Такие молодые разломы часто возникали на месте древних расколов фундамента. Наконец, выделяется еще одна очень интересная категория разломов — непрерывного развития, которые проявлялись в течение палеозойской, мезозойской и кайнозойской эр. С такими разломами связаны флексурно-разрывные зоны, затрагивающие весь осадочный чехол (Степановско-Фурмановкая, Советско-Луговская флексуры в Нижнем Поволжье).

    В пределах Восточно-Европейской платформы расположен целый ряд месторождений полезных ископаемых, имеющих большое народнохозяйственное значение. К ним относятся железные руды, нефть, газ, каменный уголь, цветные металлы, апатиты, минеральные соли, строительные материалы и т. п.

    Источник

    Глава 1. Литосфера

    В.В. Братков, Н.И. Овдиенко
    Геоэкология
    Учебное пособие. – М., 2005.

    Глава 1. Литосфера

    1.2. Природные системы литосферы

    1.2.2. Тектонические структуры литосферы

    Тектонические структуры могут быть разной величины — от микроструктур, изучаемых с помощью микроскопа, до самых крупных структур, занимающих громадные площади и уходящих корнями в мантию. Рассмотрим наиболее крупные и широко распространённые тектонические структуры.

    Древние платформы (кратоны) — обширные участки земной коры, обладающие сравнительно малой подвижностью, с равнинным или платообразным рельефом, могут иметь двухъярусное строение. По своему строению древние платформы подразделяются на следующие структуры.

    Щиты представляют собой выходы кристаллического основания древней платформы на дневную поверхность. Они формировались в период архейского и протерозойского (байкальского) орогенеза и имеют глубокое основание, иногда доходящее до мантии. Примеры: Балтийский, Алданский, Канадский щиты и др.

    Плиты древних платформ — участки платформ с двухъярусным строением: в глубине залегает древний кристаллический фундамент, а верхний ярус представляет собой платформенный чехол обычно со спокойным залеганием слоёв преимущественно осадочных пород, недислоцированных и неметаморфизованных (слой чехла может достигать 8–10 км). Пример: Русская плита Восточно-Европейской платформы. В пределах плит древних платформ выделяются синеклизы и антеклизы.

    Синеклиза — это крупная часть плиты, в которой залегание пород чехла образует очень пологую блюдцеобразную структуру, отличающуюся полнотой стратиграфического разреза и увеличением мощности отложений к центру. Примеры: Московская, Вилюйская, Тунгусская синеклизы и др.

    Антеклиза — это крупная часть плиты, в которой залегание пород чехла представляет очень пологое куполовидное строение, мощность слоёв уменьшается к центру, возможна неполнота стратиграфического разреза. Примеры: Белорусская, Воронежская, Волго-Уральская антеклизы на Восточно-Европейской платформе. Обычно рельеф синеклиз бывает несколько пониженный по сравнению с рельефом антеклиз.

    Молодые (эпипалеозойские и мезозойские) платформы (кратоны) имеют кристаллический фундамент более молодой, чем у древних платформ. По сравнению с древними платформами характеризуются большей тектонической активностью. Участки молодых платформ подвержены не столько эпейрогеническим движениям, сколько разрывным нарушениям и дифференцированным поднятиям или опусканиям отдельных глыб. Примеры: Скифская, Туранская, Западно-Сибирская платформы. Молодые платформы подразделяются на следующие структуры.

    Выступы кристаллического фундамента платформы представляют собой одноярусные структуры со скоростью тектонических поднятий, несколько превышающей скорость денудации, в рельефе часто представлены горстами.

    Плиты молодой платформы представляют собой двухъярусные структуры, где кристаллический фундамент перекрыт осадочным чехлом. Могут образовывать обширные плоские равнины (например, плита Западно-Сибирской платформы) или небольшие понижения в рельефе (грабены и другие структуры) между поднятиями выступов фундамента молодой платформы.

    Геосинклинальные пояса (или остаточные геосинклинали) — обширные высокоподвижные, сейсмически и тектонически активные, линейно вытянутые пояса земной коры. Располагаются либо между древними материковыми платформами, либо между материковой платформой и ложем океана. Например, Андийский, Средиземноморский геосинклинальные пояса и др. Характеризуются повышенной скоростью, большим размахом и контрастностью тектонических движений, интенсивной складчатостью, надвигами и шарьяжами, напряжёнными и разнообразными магматическими процессами, явлениями регионального метаморфизма и эндогенного оруденения. Геосинклинальные пояса могут включать в себя следующие структуры.

    Антиклинории — крупные, протяжённостью в десятки и сотни километров, сложно построенные участки земной коры. Представляют удлинённый комплекс складок слоёв земной коры. Характеризуются наибольшей приподнятостью рельефа в центральной части, нередко внедрением крупных интрузивных тел, развитием на крыльях склонов надвиговых нарушений. Примеры: антиклинорий Большого Кавказа, Гималайский антиклинорий и др.

    Синклинории — сложные складчатые структуры общего синклинального строения, могут разделять антиклинории в крупных молодых горных системах. Пример: Калифорнийская долина и др.

    Срединные массивы — относительно устойчивые участки земной коры в геосинклинальных поясах, разделяющих отдельные геосинклинальные системы или антиклинории, от которых отличаются меньшей подвижностью и более древним (вплоть до докембрийского) возрастом. Представляют собой микроконтиненты (обломки древних материков), отторгнутые при заложении геосинклинальных поясов. Примеры: Малоазиатский, Индосинийский срединные массивы и др.

    Краевые (передовые, предгорные) прогибы — линейно вытянутые, асимметричные, протяжённые (свыше 1000 км) прогибы в зоне, пограничной между платформой и геосинклинальным горным сооружением, заполнены преимущественно молассовым крупнообломочным материалом. В рельефе выражены цепочкой впадин, разделённых поперечными поднятиями. С краевыми прогибами связано накопление угленосных и соленосных толщ, а также формирование структур, благоприятных для накопления нефти и газа. Примеры: Паданский, Предкарпатский, Северо-Кавказский краевые прогибы и др.

    Источник

    Оцените статью