Фундамент под емкость 1000 кубов

Методика расчета фундамента для резервуара

Фундаменты дл вертикальных цилиндрических резервуаров состоят из грунтовой подсыпки, песчаной подушки и гидроизолирующего слоя. Для резервуара вместимостью 10000 м 3 и более предусматривают бетонное кольцо шириной 1000 мм и высотой 300 мм (рисунок…)

Давление на грунт распространяется не по вертикальным линиям ,а по линиям шара (рисунок…). Кривые 2 одинакового давления называются изобарами и показывают величину давления на грунт.

Давление на грунт заполненного резервуара 1 определяется из выражения

Р=h , Н/м 2 (7.11)

где: h- высота резервуара, м; — плотность нефтепродукта, хранимого в резервуаре, кг/м3; G- масса резервуара, кг; F- площадь поперечного сечения резервуара, м 2 .

Пример: Определить давление на грунт под вертикальный цилиндрический резервуар вместимостью 5000 м 3 ,заполненного нефтепродуктом.

Исходные данные : высота резервуара h=12 м; плотность нефтепродукта =1000 кг/м 3 ; масса резервуара G = 90000 кг; площадь поперечного сечения F = 408 м 2 .

Решение: Определим давление на грунт от собственной силы тяжести резервуара и хранимого в ней жидкости:

Р=h , (7.12)

Н/м 2 или 1,22 кг/см 2 .

Несущая способность грунта должна быть порядка 196200 Н/м 2 или 2 кгс/см 2 .В грунтах с меньшей несущей способностью принимают меры к его уплотнению.

Источник

10. Основания и фундаменты

10.1. Основные положения

10.1.1. Проектирование основания и фундаментов под резервуар должно выполняться специализированной проектной организацией с учетом положений ГОСТ Р 52910-2008, СНиП 2.02.01-83*, СНиП 2.02.03-85; СНиП 2.02.04-88; СНиП II-7-87 и дополнительных требований настоящего Стандарта.

10.1.2. Материалы инженерно-геологических и гидрологических изысканий площадки строительства должны содержать следующие сведения о грунтах и грунтовых водах:

— литологические колонки под пятно резервуара, количество, глубина и расположение которых должны обеспечить построение достоверных разрезов вдоль контурной окружности основания и по ее диаметрам;

— физико-механические характеристики грунтов, представленных в литологических колонках (удельный вес γ, угол внутреннего трения φ, сцепление С, модуль деформации Е, коэффициент пористости ε);

— расчетный уровень грунтовых вод с прогнозом гидрологического режима на ближайшие 20 лет для резервуаров объемом до 10000 м 3 и на 50 лет для резервуаров объемом более 10000 м 3 .

Кроме того, если сжимаемая толща представлена слабыми грунтами (модуль деформации менее 10 МПа), то для каждой грунтовой разности должны быть приведены значения коэффициента фильтрации.

Для величин физико-механических характеристик грунтов должны приводиться однозначные расчетные значения.

При проектировании фундаментов резервуаров в сложных инженерно-геологических условиях инженерные изыскания должны выполняться специализированными организациями и содержать данные для выбора типа оснований и фундаментов с учетом возможного изменения (в процессе строительства и эксплуатации) инженерно-геологических и гидрологических условий площадки строительства.

10.1.3. Расчет основания по деформациям предусматривает определение расчетных значений величин, характеризующих абсолютные и относительные перемещения фундаментных конструкций и элементов стальной оболочки резервуара с целью их ограничения, обеспечивающего нормальную эксплуатацию резервуара и его долговечность.

10.1.4. Расчет осадок основания резервуара следует выполнять, как правило, с использованием расчетной схемы основания в виде линейно-деформируемой среды: полупространства с условным ограничением глубины сжимаемой толщи или слоя конечной толщины.

В случае, если расчетные значения деформаций основания превышают предельные значения, следует выполнить расчет осадок с учетом совместной работы оболочки резервуара и основания, рассматривая расчетную схему основания, характеризуемую коэффициентами жесткости, в качестве которых принимаются отношения давления на основание к его расчетным осадкам в различных точках поверхности согласно рекомендациям СНиП 2.01.09.

Расчет системы «резервуар-основание» может быть выполнен также с использованием существующих вычислительных комплексов по определению осадок фундаментов с учетом взаимодействия основания и оболочки резервуара.

10.1.5. Проектная высота расположения днища резервуара определяется технологическим заданием, однако, эта высота должна превышать максимальный уровень окружающей спланированной поверхности земли минимум на 0.5 м, а после достижения основанием расчетных осадок высота днища над уровнем окружающей земли должна быть не менее 0,15 м.

10.1.6. В проекте КМ должно быть представлено задание для проектирования основания и фундаментов под резервуар, включающее расчетные реактивные усилия (нагрузки), передаваемые от корпуса резервуара на его фундамент, а также величины допустимых деформаций основания.

10.2. Расчет нагрузок на основание и фундамент резервуара

10.2.1. Реактивные усилия, передаваемые с корпуса на основание и фундамент резервуара, определяются в зависимости от конструктивных, технологических, климатических, сейсмических нагрузок и их сочетаний, приведенных в таблице П.4.6 Приложения П.4.

10.2.2. В состав нагрузок, передаваемых по контуру стенки резервуара на его фундамент, входят нагрузки двух типов.

Нагрузки первого типа, обеспечивающие осесимметричное распределение усилий по контуру стенки, включают:

— вес резервуара с учетом оборудования и теплоизоляции, за вычетом центральной части днища;

— избыточное давление и разрежение в газовом пространстве резервуара.

Нагрузка второго типа возникает от ветрового воздействия на корпус резервуара и создает кососимметричное распределение усилий по контуру стенки.

Ветровая нагрузка вызывает появление опрокидывающего момента, вычисляемого относительно точки, расположенной на оси симметрии опорного контура стенки с подветренной стороны резервуара. Нагрузки первого типа создают момент, препятствующий опрокидыванию резервуара.

10.2.3. Перечень необходимых расчетов включает:

— определение нагрузок на центральную часть днища в условиях эксплуатации, гидро- пневмоиспытаний и при сейсмическом воздействии;

— расчет максимальных и минимальных нагрузок по контуру стенки в условиях эксплуатации и при сейсмическом воздействии;

— проверку на отрыв окраек днища от фундамента при действии внутреннего избыточного давления на пустой резервуар;

— проверку на опрокидывание пустого резервуара путем сравнения опрокидывающего момента и момента от удерживающих сил;

— проверку резервуара с продуктом на опрокидывание в условиях землетрясения;

— расчет анкеров, если происходит отрыв окраек днища от фундамента при действии внутреннего давления на пустой резервуар;

— расчет анкеров, если устойчивость пустого резервуара от опрокидывания не обеспечена;

— расчет анкеров, если устойчивость резервуара с продуктом от опрокидывания при землетрясении не обеспечена.

Расчет нагрузок на основание и фундамент резервуара при землетрясении приведен в п. 9.6.6.

10.2.4. Опрокидывающий момент, действующий на резервуар в результате ветрового воздействия, вычисляется по формуле:

10.2.5. Расчетная погонная нагрузка по контуру стенки характеризуется максимальным и минимальным значениями, соответствующими диаметрально противоположным участкам фундамента (рис. 10.1). Максимальная и минимальная нагрузки определяются соответственно, как сумма и разность максимальных нагрузок первого и второго типа (с учетом знаков). Расчетная нагрузка по контуру стенки в основании резервуара определяется по формулам:

Рис. 10.1. Нагрузки на фундамент, передаваемые по контуру стенки резервуара

10.2.6. Расчетная вертикальная нагрузка на фундамент резервуара, соответствующая 1-му расчетному сочетанию нагрузок (таблица П. 4.6 Приложения П.4), составляет:

10.2.7. Если теплоизоляция, или вакуум, или снеговая нагрузка отсутствуют, формула 10.2.6 должна быть приведена в соответствие с полученным сочетанием нагрузок.

10.2.8. Коэффициент fs назначается согласно указаниям п. 9.2.3.1.7.

10.2.9. Нагрузки на центральную часть днища определяются исходя из величины внутреннего избыточного давления, максимального проектного уровня налива и плотности продукта (эксплуатация) или воды (гидро- пневмоиспытания). Эту нагрузку следует определять по формулам:

pf = γn[0,001g(ρH + ρstbc) + 1,2p],

Pfg = γn[0,001g(ρgH0g + ρstbc) + 1,25p].

10.2.10. Требования по установке анкеров

10.2.10.1. Анкеровка корпуса резервуара требуется если:

— происходит отрыв окраек днища от фундамента при действии внутреннего избыточного давления;

— момент от сил, вызванных ветровым воздействием, превышает момент от вертикальных удерживающих сил, действующих на пустой резервуар.

10.2.10.2. В случаях, указанных в п. 10.2.10.1, стенка резервуара прикрепляется к фундаменту анкерными устройствами, шаг установки и размеры которых определяются расчетом.

10.2.10.3. Требуется установка анкеров, если выполняются следующие неравенства, соответствующие условиям п. 10.2.10.1:

Qmin 3 и не менее 1,0 для резервуаров объемом свыше 3000 м 3 . Толщина железобетонного кольца принимается не менее 0,3 м. При строительстве резервуаров в сейсмических районах наличие кольцевого железобетонного фундамента является обязательным. Ширина кольца должна быть не менее 1.5 м, а толщина не менее 0,4 м.

Рис. 10.4. Сплошная железобетонная плита

10.3.4. Фундамент в виде сплошной железобетонной плиты рекомендуется для резервуаров диаметром не более 15 м на немерзлых грунтах, для всех резервуаров на мерзлых грунтах, а также для всех резервуаров при хранении в них этилированных бензинов, реактивного топлива или иных ядовитых продуктов. Для обнаружения возможных протечек продукта железобетонная плита должна иметь уклон не менее 1 % от центра к периметру, а также радиально расположенные дренажные канавки.

Источник

Фундаменты и основания под резервуары

Основания под резервуары

Основание стоит рассматривать совместно с проектируемым сооружением, так как под воздействием веса сооружения и других всевозможных эксплуатационных воздействий грунты основания испытывают дополнительное давление, деформируются (уплотняются, оседают) и в свою очередь оказывают воздействие на сооружение.

Виды основания под резервуары

  • естественные — грунты которых находятся под подошвой фундамента в их природном залегании.
  • естественные с подсыпкой;
  • искусственные

Естественные основания

Естественные основания под резервуары — грунты которых находятся под подошвой фундамента в их природном залегании. Грунты под естественные основания должны обладать достаточным сопротивлением сжатию, а конкретнее грунты должны обладать следующими свойствами:

  • малой и равномерной сжимаемостью, то есть большой плотностью, обеспечивающей малую и равномерную осадку сооружения;
  • нерастворяемостью грунтовыми, дождевыми и талыми водами.

В процессе эксплуатации резервуара по мере уплотнения грунтов его основания происходит осадка фундамента. С целью выяснить степень влияния осадок на сооружение производится расчет оснований и фундаментов. Расчет основания резервуара заключается в вычислении давлений (напряжений) на грунты под подошвой фундамента и величин осадок грунтов основания, возможных при этих давлениях. При получении недопустимых величин осадок принимают соответствующие меры с целью уменьшения напряжений и ограничению осадок до допускаемых пределов. Последнее может быть достигнуто уширением подошвы фундамента или переходом к искусственному основанию.

Естественные основания с подсыпкой — переходная конструкция между естественными и искусственными основаниями (естественное основание с песчаной или грунтовой подушкой, выполняемой в виде подсыпки на основание).

Типовые основания резервуаров

Насыпь

Насыпь в сочетании с песчаной подушкой

  1. Щебеночная или песчаная насыпь
  2. Песчаная подушка
  3. Слабый грунт

Железобетонное кольцо под стенкой

  1. Щебеночная или песчаная насыпь
  2. Железобетонное кольцо
  3. Стенка РВС
  4. Днище РВС

Подсыпка на основание выполняет следующие функции:

  • распределить давление от металлоконструкций резервуара на основание;
  • осуществить дренаж днища;
  • обеспечить антикоррозийную защиту днища.

Для подсыпки используют следующие материалы:

  • уплотненный крупный песок;
  • щебень;
  • гравий;
  • гравийно-песчаную смесь.

Для обеспечения антикоррозионной защиты резервуара, особенно днища, по верху подсыпки укладывают гидрофобный слой с добавлением вяжущих на основе нефтепродуктов. Как правило, применяется высота подсыпки 0,2 – 2,5 м. Эта величина зависит от результатов инженерно-геологических изысканий площадки строительства.

Поверхность подсыпки обычно устраивают так, чтобы она имела уклон от центра к периферии. Это обеспечивает компенсацию неравномерных осадок резервуара, а также облегчает приток хранимого продукта к откачивающим устройствам. На практике осадка днища резервуара может достигать 2 м, именно поэтому подъем центральной части днища может стать ключевым условием длительной работоспособности конструкции. В случае если на площадке строительства на небольшую глубину (до 3 м) залегают слабые или пучинистые грунты (в районах с глубоким сезонным промерзанием грунтов), практикуется их замена с местным уплотнением песчаным или глинистым грунтом, часто привозным. При более обширном слое залегания слабых грунтов такой метод зачастую экономически неэффективен в силу возрастания текущих расходов на выравнивание резервуаров, установленных таким способом.

Искусственные основания

  • искусственно упрочненные грунты основания (путем уплотнения, химического закрепления или забивки бетонных или песчаных свай);
  • свайные основания и фундаменты глубокого заложения, передающие нагрузку от сооружения на более прочные грунты, залегающие на большей глубине от поверхности земли;

Искусственные основания под слабые грунты

  • Для просадочных грунтов предусматривают устранение просадочных свойств в пределах всей просадочной толщи или устройство свайных фундаментов, полностью прорезающих просадочную толщу.
  • Для набухающих грунтов, в случае если расчетные деформации основания превышают предельные, предусматривают проведение следующих мероприятий:
    • полная или частичная замена слоя набухающего грунта не набухающим;
    • применение компенсирующих песчаных подушек;
    • устройство свайных фундаментов.
  • На водонасыщенных пылевато-глинистых, биогенных грунтах и илах, в случае если расчетные деформации основания превышают допустимые, должно предусматриваться проведение следующих мероприятий:
    • устройство свайных фундаментов;
    • для биогенных грунтов и илов – полная или частичная замена их песком, щебнем, гравием и т.д.;
    • предпостроечное уплотнение грунтов временной пригрузкой основания (допустимо проведение уплотнения грунтов временной нагрузкой в период гидроиспытания резервуаров по специальной программе).
  • На подрабатываемых территориях, в случае если расчетные деформации основания превышают допустимые, должно предусматриваться проведение следующих мероприятий:
    • устройство сплошной железобетонной плиты со швом скольжения между днищем резервуара и верхом плиты;
    • применение гибких соединений (компенсационных систем) в узлах подключения трубопроводов;
    • устройство приспособлений для выравнивания резервуаров.
  • На закарстованных территориях, предусматривают проведение следующих мероприятий, исключающих возможность образования карстовых деформаций:
    • заполнение карстовых полостей;
    • прорезка карстовых пород глубокими фундаментами;
    • закрепление закарстованных пород и (или) вышележащих грунтов.

Размещение резервуаров в зонах активных карстовых процессов не допускается.

При применении свайных фундаментов концы свай заглубляют в малосжимаемые грунты и обеспечивают требования к предельным деформациям резервуаров. Свайное основание может быть как под всей площадью резервуара – «свайное поле», так и «кольцевым» – под стенкой резервуара. Если применение данных мероприятий не исключает возможность превышения предельных деформаций основания или в случае нецелесообразности их применения, предусматривают специальные устройства (компенсаторы) в узлах подключения трубопроводов, обеспечивающие прочность и надежность узлов при осадках резервуаров, а также устройство для выравнивания резервуаров. При строительстве в районах распространения многолетнемерзлых грунтов при использовании грунтов основания по первому принципу (с сохранением грунтов в мерзлом состоянии в период строительства и эксплуатации) предусматривают их защиту от воздействия положительных температур хранимого в резервуарах продукта. Это достигается устройством проветриваемого подполья («высокий ростверк») или применением теплоизоляционных материалов в сочетании с принудительным охлаждением грунтов – «термостабилизацией».

Методы укрепления грунта основания

При строительстве резервуаров на площадках, сложенных мощной толщей слабых грунтов, возникают значительные неравномерные осадки основания, что существенно влияет на дальнейшую эксплуатацию резервуаров. Поэтому при строительстве резервуаров на слабых грунтах применяют специальные подготовки основания.

Грунтовые подушки должны выполняться из послойно уплотненного при оптимальной влажности грунта, модуль деформации которого после уплотнения должен быть не менее 15 МПа, коэффициент уплотнения – не менее 0,90.

Уклон откоса грунтовой подушки следует выполнять не более 1:1,5. Ширина горизонтальной части поверхности подушки за пределами окрайки должна быть:

  • 0,7 м. – для резервуаров объемом не более 1000 м 3 ;
  • 1,0 м. – для резервуаров объемом более 1000 м 3 ;
  • 1,0 м. – независимо от объема, для площадок строительства с расчетной сейсмичностью 7 и более баллов.

Поверхность подушки за пределами периметра резервуара (горизонтальная и наклонная части) должна быть защищена отмосткой. Применяются разнообразные методы укрепления грунта основания (без его замены).

Существующие методы:

  • Метод предварительного наполнения резервуара
  • Метод уплотнения основания глубинным водопонижением
  • Метод уплотнения основания насыпью
  • Метод уплотнения тяжелыми трамбовками
  • Метод химического и термического закрепления грунта

Геологические и гидрогеологические исследования перед проектированием оснований и фундаментов резервуаров

При проектировании фундамента цилиндрического резервуара необходимо изучить геологическое строение площадки, отведенной под застройку, и гидрогеологические условия.

Глубина разведки грунтов, расположенных ниже подошвы фундамента, зависит от давления, передаваемого сооружением на основании, и принимается равной или более глубины активной зоны основания (сжимаемой толщи грунтов основания).

Разведка грунтов производится шурфованием и бурением.

  • Шурф (нем. Schurf) – это вертикальная либо наклонная горная выработка глубиной до 40 м, которая проходится с поверхности земли для разведки полезных ископаемых, вентиляции, водоотлива, транспортирования материалов, спуска и подъема людей и т.д. Площадь поперечного сечения шурфа от 0,8 до 4 м2. Форма поперечного сечения шурфа может быть круглой, прямоугольной или квадратной.
  • Бурение скважин – это процесс сооружения направленной горной выработки большой длины и малого диаметра. Начало скважины от поверхности земли называют устьем, дно – забоем.

Преимущества шурфования перед бурением заключаются в том, что образцы грунтов, взятые из шурфа, имеют ненарушенную структуру; по стенкам шурфа устанавливается род грунтов, мощность каждого пласта и их напластование, а на дне шурфа производится испытание сопротивления грунтов сжатию.

Объем и характер исследования грунтов зависят от монументальности сооружения, рода и напластования грунтов и уровня грунтовых вод.

При исследовании бурением в ответственных местах закладываются шурфы, и проверяется сопротивление грунтов основания сжатию пробными нагрузками.

Месторасположение и число шурфов или скважин в каждом отдельном случае назначаются в соответствии с очертанием и размерами сооружения в плане и степенью однородности грунтов.

Обычно шурфы или скважины закладываются вблизи периметра сооружения и наиболее ответственных его частей. В плане строительного участка шурфы или скважины должны образовать сетку со средними расстояниями в 25–30 м. Более детальная разведка производится в пределах сооружения.

По данным исследования составляются план и геологические разрезы участка с обозначением рода грунта, напластования и уровня грунтовых вод. На основании физико-механических характеристик устанавливаются расчетные сопротивления грунтов, целесообразность использования площадки под строительство и род фундаментов под резервуары.

Вообще, в процессе изысканий собираются следующие сведения о грунтах и грунтовых водах:

  • литологические колонки;
  • физико-механические характеристики грунтов (плотность грунтов ρ, удельное сцепление грунтов с, угол внутреннего трения φ, модуль деформации Е, коэффициент пористости е, показатель текучести IL и др.);
  • расчетный уровень грунтовых вод.

Число геологических выработок (скважин) определяется площадью резервуара и должно быть не менее четырех (одна – в центре и три – в районе стенки, т. е. 0,9-1,2 радиуса резервуара).

В дополнение к скважинам допускается исследование грунтов методом статического зондирования.

При проведении инженерных изысканий следует предусматривать исследование грунтов на глубину активной зоны (ориентировочно 0,4-0,7 диаметра резервуара) в центральной части резервуара и не менее 0,7 активной зоны – в области стенки резервуара. При свайных фундаментах – на глубину активной зоны ниже подошвы условного фундамента (острия свай).

Для районов распространения многолетнемерзлых грунтов проводятся инженерно-геокриологических изыскания. Данные изыскания должны обеспечить получение сведений о составе, состоянии и свойствах мерзлых и оттаивающих грунтов, криогенных процессов и образованиях, включая прогнозы изменения инженерно-геокриологических условий проектируемых резервуаров с геологической средой.

Фундаменты под резервуары

Фундамент — это часть сооружения, передающая нагрузку от веса сооружения на грунты основания и распределяющая эту нагрузку на такую площадь основания, при которой давления по подошве не превышают расчетные. В зависимости от формы фундаменты подразделяются на:

  • сплошные, в виде плит под всем сооружением;
  • ленточные, расположенные только под стеной сооружения;
  • столбчатые в виде отдельных опор.

Выбор типа фундамента под резервуар зависит от многих факторов, самым важным, конечно является грунт, его характеристики (сжатие, пучинистость при сезонном промерзании, глубине залегания и пр.), от объема резервуара, а так же от величины нагрузок который будет передаваться на грунт. Наиболее рационально использовать фундаменты на естественном основании, по причине того, что этот способ наиболее дешевый, с полным или частичным отказом от свай под днищем резервуара. Перед строительством фундамента необходимо произвести отвод грунтовых вод и осадков из-под днища резервуара. Все работы по устройству фундамента под резервуар проводятся до начала его монтажа. Проектную отмостку основания (фундамента), фундамент под шахтную лестницу и опоры под подводящие трубопроводы рекомендуется выполнять после монтажа металлоконструкций резервуара.

Источник

Читайте также:  Основание для здания без фундамента
Оцените статью