- Пособие к СНиП 2.03.01-84 и СНиП 2.02.01-83 по проектированию фундаментов на естественном основании под колонны зданий и сооружений Часть 3
- АРМИРОВАНИЕ ФУНДАМЕНТОВ
- Черт. 27. Армирование подошвы фундамента
- а — при b £ 3 м; б — при b > 3 м; 1- нижние сетки; 2 — верхние сетки
- Черт. 28. Армирование железобетонного подколонника пространственными каркасами, собираемыми из плоских сеток
- 1 — сетка
- Черт. 30. Армирование бетонного подколонника, имеющего стакан под сборную колонку
- 1 — сетка
- Черт. 31. Схема расположения горизонтальных сеток армирования подколонника:
- а — при e 0 > l c /2; б — при l c /6 e 0 £ l c /2
- 5. IIPOЕКТИРОВАНИЕ ФУНДАМЕНТОВ С ПОМОЩЬЮ ЭВМ
- Черт 32. Внецентренно нагруженный фундамент под сборную колонну
- НАЗНАЧЕНИЕ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ФУНДАМЕНТА
- ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ПОДКОЛОННИКА В ПЛАНЕ
- РАСЧЕТ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА НА ПРОДАВЛИВАНИЕ
- ОПРЕДЕЛЕНИЕ ВЫСОТЫ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА h pl
- ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ВТОРОЙ СТУПЕНИ ФУНДАМЕНТА
- ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ТРЕТЬЕЙ СТУПЕНИ ФУНДАМЕНТА
- ОПРЕДЕЛЕНИЕ СЕЧЕНИЙ АРМАТУРЫ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА
Пособие к СНиП 2.03.01-84 и СНиП 2.02.01-83 по проектированию фундаментов на естественном основании под колонны зданий и сооружений Часть 3
4.11. Глубину заделки двухветвевых колонн необходимо проверять также по анкеровке растянутой ветви колонны в стакане фундамента.
Глубину заделки растянутой ветви двухветвевой колонны в стакане необходимо проверять по плоскостям контакта бетона замоноличивания:
с бетонной поверхностью стакана — по формуле
с бетонной поверхностью ветви колонны — по формуле
d c ³ N p / 2 (b c ¢ + h c ¢ ) R an ¢¢ . (113)
В формулах (112), (113):
d c — глубина заделки двухветвевой колонны, м;
N p — усилие растяжения в ветви колонны, тс;
h c ¢ , b c ¢ — размеры сечения растянутой ветви, м;
R an ¢ , R an ¢¢ — величина сцепления бетона, принимаемая по табл. 7, тс/м 2 .
Величина сцепления по плоскостям контакта бетона замоноличивания с бетоном
стенок стакана R an ¢
ветви колонны R an ¢¢
П р и м е ч а н и е. Величина R bt относится к бетону замоноличивания.
4.12. Минимальную толщину стенок неармированного стакана поверху следует принимать не менее 0,75 высоты верхней ступени (подколонника) фундамента или 0,75 глубины стакана d p и не менее 200 мм.
В фундаментах с армированной стаканной частью толщина стенок стакана определяется расчетом по пп. 2.34, 2.35 и принимается не менее величин, указанных в табл. 8.
Толщина стенок стакана t, мм
колонны прямоугольного сечения с эксцентриситетом продольной силы
В плоскости изгибающего момента
0,2 l c , но не менее 150
0,3 l c , но не менее 150
0,2 l d , но не менее 150
Из плоскости изгибающего момента
4.13. Толщину дна стакана фундаментов следует принимать не менее 200 мм.
4.14. Для опирания фундаментных балок на фундаментах следует предусматривать столбчатые набетонки, которые выполняются на готовом фундаменте. Крепление набетонок к фундаменту рекомендуется осуществлять за счет сцепления бетона с предварительно подготовленной поверхностью бетона фундамента (насечки) или приваркой анкеров к закладным изделиям, или с помощью выпусков арматуры, предусмотренных в теле фундамента (при отношении высоты набетонки к ее меньшему размеру в плане ³ 15).
АРМИРОВАНИЕ ФУНДАМЕНТОВ
4.15. Армирование подошвы фундаментов следует производить сварными сетками но серии 1.410-3 и ГОСТ 23279-84.
4.16. В случае, когда меньшая из сторон подошвы в фундаменте имеет размер b £ 3 м, следует применять сетки с рабочей арматурой в двух направлениях (черт. 27, а).
При b > 3 м применяются отдельные сетки с рабочей арматурой в одном направлении, укладываемые в двух плоскостях. При этом рабочая арматура, параллельная б ó льшей стороне подошвы l, укладывается снизу. Сетки в каждой из плоскостей укладываются без нахлестки с расстоянием между крайними стержнями не более 200 мм (черт. 27, б).
Черт. 27. Армирование подошвы фундамента
а — при b £ 3 м; б — при b > 3 м; 1- нижние сетки; 2 — верхние сетки
Минимальный диаметр рабочей арматуры сеток подошв принимается равным 10 мм вдоль стороны l £ 3 м и 12 мм при l > 3 м.
4.17. При выполнении условия
анкеровка продольной рабочей арматуры сеток подошв считается обеспеченной, l b — длина участка нижней ступени, на котором прочность наклонных сечений обеспечивается бетоном, определяемая по формуле
l b = 0,75 h 1 , (115)
где h 1 — высота нижней ступени фундамента;
р max — максимальное краевое давление на грунт, вычисляемое по формулам (5), (6);
l an — длина анкеровки арматуры, определяемая по формуле
l an = (0,5 R s A st / R b A sf + 8) d , (116)
где A st , A sf — обозначения те же, что в п. 2.59;
d — диаметр продольной арматуры.
При невыполнении условия (114) в сетках необходимо предусмотреть приварку поперечных анкерующих стержней на расстоянии не более 0,8 l b от края продольного стержня. Диаметр анкерующего стержня рекомендуется принимать не менее 0,5d продольной арматуры.
Анкеровка рабочей арматуры в подошве фундамента считается обеспеченной, если хотя бы один из поперечных стержней сетки, приваренный к рабочей продольной арматуре, располагается в пределах участка l b .
4.18. Подколонники рекомендуется армировать, если это необходимо по расчету, вертикальными сварными плоскими сетками по ГОСТ 23279-85.
4.19. Минимальный процент содержания арматуры s и s’ во внецентренно сжатом железобетонном подколоннике должен составлять не менее 0,04 % площади его поперечного сечения.
В подколонниках с продольной арматурой, расположенной равномерно по периметру сечения, минимальная площадь сечения всей продольной арматуры должна приниматься не менее 0,08 %.
4.20. Железобетонные подколонники рекомендуется армировать вертикальными сварными плоскими сетками, объединяемыми в пространственный каркас. Сетки рекомендуется устанавливать по четырем сторонам сечения подколонника (черт. 28).
Черт. 28. Армирование железобетонного подколонника пространственными каркасами, собираемыми из плоских сеток
1 — сетка
4.21. В железобетонных подколонниках, где по расчету сжатая арматура не требуется, а количество растянутой арматуры не превышает 0,3 %, допускается не ставить продольную и поперечную арматуру по граням, параллельным плоскости изгиба. В этих случаях допускается:
установка сеток только по двум противоположным сторонам сечения подколонника, как правило, в плоскостях, перпендикулярных плоскости действия б ó льшсго из двух воздействующих на фундамент изгибающих моментов;
соединение плоских сеток в пространственный каркас без соединения продольных стержней хомутами и шпильками. Толщина защитного слоя бетона (см. п. 5.19 СНиП 2.03.01-84) в этом случае должна быть не менее 50 мм и не менее двух диаметров продольной арматуры (черт. 29);
сетки устанавливаются на всю высоту подколонника.
Черт. 29. Армирование железобетонного подколонника двумя сетками
1 — арматурная сетка
4.22. В случаях, когда по расчету принято бетонное сечение подколонника, пространственный каркас устанавливается только в пределах стаканной части с заглублением ниже дна стакана на величину не менее 35 диаметров продольной арматуры (черт. 30).
Черт. 30. Армирование бетонного подколонника, имеющего стакан
под сборную колонку
1 — сетка
4.23. Если в сечении бетонного подколонника возникают растягивающие или сжимающие напряжения менее 10 кгс/см 2 , то при максимальных сжимающих напряжениях более 0,8R b (напряжения определяются как для упругого тела) необходимо выполнять конструктивное армирование на всю высоту подколонника. При этом площадь сечения арматуры с каждой стороны подколонника должна быть не менее 0,02% площади его поперечного сечения, а в случае расположения арматуры по периметру сечения — не менее 0,04 %.
4.24. При расчетном или конструктивном армировании подколонника диаметр продольных стержней вертикальной арматуры принимается не менее 12 мм. В бетонном подколоннике минимальный диаметр продольной арматуры принимается равным 10 мм.
4.25. Горизонтальное армирование стаканной части подколонника осуществляется сварными плоскими сетками с расположением стержней у наружных и внутренних поверхностей стенок стакана. Продольная вертикальная арматура должна размещаться внутри горизонтальных сеток. Диаметр стержней сеток принимается не менее 8 мм и не менее четверти диаметра продольной арматуры вертикального армирования подколонника.
4.26. Расположение горизонтальных сеток следует принимать по черт. 31.
Черт. 31. Схема расположения горизонтальных сеток армирования
подколонника:
а — при e 0 > l c /2; б — при l c /6 e 0 £ l c /2
4.27. Толщина защитного слоя бетона для рабочей арматуры подколонника должна быть не менее 30 мм, а для подошвы фундамента при условии устройства под ним бетонной подготовки принимается равной 35 мм.
4.28. При необходимости косвенного армирования дна стакана устанавливают сварные сетки (от двух до четырех).
5. IIPOЕКТИРОВАНИЕ ФУНДАМЕНТОВ С ПОМОЩЬЮ ЭВМ
5.1. Для подбора типовых (например, из номенклатуры серии 1.412) или проектирования нетиповых фундаментов имеется ряд программ, в которых реализованы алгоритмы расчета оснований под фундаменты и расчета прочности конструктивных элементов фундаментов.
5.2. Алгоритмы расчета грунтового основания по различным программам включают следующие нормируемые проверки, в результате удовлетворения которых определяют размеры подошвы:
по величинам средних, краевых и угловых давлений под подошвой;
по форме эпюры давлений и величине отрыва;
по величине давления на кровлю слабого слоя;
по величинам осадки и крена;
по несущей способности:
по прочности скального основания;
по прочности и устойчивости нескального основания;
на сдвиг по подошве;
на сдвиг по слабому слою.
5.3. Алгоритмы расчета прочности конструктивных элементов фундамента включают следующие нормируемые проверки, в результате удовлетворения которых определяют размеры ступеней и армирование:
по продавливанию и раскалыванию;
по поперечной силе;
по обратному моменту;
на косое внецентренное сжатие сплошного бетонного и железобетонного сечения;
на изгиб стаканной части;
на смятие под торцом колонны.
5.4. В табл. 9 приведены общие данные о специализированных программах, рекомендуемых при проектировании фундаментов на естественном основании под колонны зданий и сооружений.
Типовые по серии 1.412
Нескальные, непросадочные, сухие и водонасыщенные
Типовые по серии 1.412 и нетиповые, в том числе глубокого заложения
Скальные и нескальные, включая просадочные и водонасыщенные
Нетиповые, в том числе глубокого заложения
Нескальные, непросадочные, сухие
Нескальные, включая просадочные и водонасыщенные
Окончание табл. 9
П р и м е ч а н и е. Все материалы по программам для расчета фундаментов публикуются в информационных выпусках фонда алгоритмов и программ отрасли «Строительство» Госстроя СССР.
Пример 1. Расчет внецентренно нагруженного фундамента под сборную колонну
Дано: фундамент со ступенчатой плитной частью и стаканным сопряжением с колонной серии 1.423-3 сечением l c х b c = 400×400 мм (черт. 32); глубина заделки колонны d c = 750 мм; отметка обреза фундамента — 0,15 м; глубина заложения — 2,55 м; размер подошвы, определенный из расчета основания по деформациям в соответствии с указаниями СНиП 2.02.01-84, l x b = 3,3х2,7 м. Расчетные нагрузки на уровне обреза фундамента приведены в табл. 10.
М х , МН × м (тс × м)
Окончание табл. 10
М х , МН × м (тс × м)
Обозначения, принятые в таблице:
g f — коэффициент надежности по нагрузке;
х — направление вдоль б ó льшего размера подошвы фундамента.
П р и м е ч а н и е. Материал — сталь класса А-III.
Черт 32. Внецентренно нагруженный фундамент под сборную колонну
R s = R sc = 355 МПа ( Æ 6-8 мм) (3600 кгс/см 2 );
R s = R sc = 365 МПа ( Æ 10-40 мм) (3750 кгс/см 2 );
E s = 2 × 10 5 МПа (2 × 10 6 кгс/см 2 ).
Бетон тяжелый класса В 12,5 по прочности на сжатие:
R b = 7,5 МПа (76,5 кгс/см 2 ); R bt = 0,66 МПа (6,75 кгс/см 2 );
R bt.ser = 1,0 МПа (10,2 кгс/см 2 ); E b = 21 × 10 3 МПа (214 × 10 3 кгс/см 2 ).
Коэффициенты условий работы бетона: g b2 = 0,9; g b9 = 0,9 (для бетонных сечений).
НАЗНАЧЕНИЕ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ
ФУНДАМЕНТА
ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ПОДКОЛОННИКА В ПЛАНЕ
Необходимая толщина стенок армированного стакана определяется с помощью табл. 10 для комбинации № 3 расчетных сочетаний нагрузок:
e 0 = M/N = 0,336/2,1 = 0,16 м, т.e. e 0 с = 2 × 0,4 = 0,8 м.
При е 0 с толщина стенок стакана принимается не менее 0,2l c = 0,2 ´ 0,4 = 0,08 м и не менее 0,15 м. Тогда при l с = b с = 0,4 м минимальные размеры подколонника l cf = b cf = 2 × 0,15 + 2 × 0,075 + l c = 0,85 м.
С учетом рекомендуемых модульных размеров подколонников, приведенных в табл. 4, принимаем l cf х b cf = 0,9 х 0,9 м; глубину стакана под колонну d p = d c + 0,05 = 0,75 + 0,05 = 0,8 м; площадь подошвы фундамента А = l х b = 3,3 х 2,7 = 8,91 м 2 ; момент сопротивления подошвы фундамента в направлении б ó льшсго размера W = 4,9 м 3 .
РАСЧЕТ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА
НА ПРОДАВЛИВАНИЕ
ОПРЕДЕЛЕНИЕ ВЫСОТЫ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА h pl
Высота фундамента h = 2,55 — 0,15 = 2,4 м.
Ориентировочная минимальная высота подколонника при трехступенчатом фундаменте h cf = 2,4 — 0,3 × 3 = 1,5 м.
В соответствии с указаниями п. 2.6 при h cf — d p = 1,5 — 0,8 = 0,7 м > 0,5 (l cf — l c ) = 0,5 (0,9 — 0,4) = 0,25 м. Высота плитной части определяется проверкой на продавливание по схеме 1 от низа подколонника.
Определяем необходимую рабочую высоту плитной части по черт. 11.
Найдем максимальное краевое давление на основание при:
сочетании 1 : р = 2,4/8,91 + (0,096 + 0,036 • 2,4)/4,9 = 0,268 + 0,038 = 0,306 МПа;
сочетании 3 : р = 2,1/8,91 + (0,336 + 0,072 • 2,4)/4,9 = 0,235 +0,104 = 0,339 МПа.
Принимаем максимальное значение p max = 0,339 МПа.
По найденным значениям A 3 = b(l — 0,5b + b cf — l cf ) = 2,7(3,3 — 0,5 x 2,7 + 0,9 — 0,9) = 5,26 м 2 и r = g b2 R bt / p max = 0,9 × 0,66 / 0,339 = 1,75 необходимая рабочая высота плитной части фундамента h 0, pl = 62 см. Следовательно, h pl = 62 + 5 = 67 см.
В соответствии с указаниями п. 4.4 и табл. 4 высоту плитной части принимаем равной 0,9 м. Для случая индивидуального фундамента допускается принимать высоту 0,7 м (кратной 100 мм) с высотой нижней ступени 0,3 м и верхней 0,4 м.
Укажем, что с учетом принятых в дальнейшем размеров ступеней (см. черт. 32) объем бетона плитной части в обоих случаях будет практически одинаков: 4,4 м 3 при высоте плитной части 0,7 м и 4,38 м 3 — при высоте плитной части 0,9 м. Вместе с тем б ó льшая высота плитной части позволяет снизить сечение рабочей арматуры подошвы фундамента, что отражается и на общей его стоимости (см. табл. 3 прил. 7).
При 0,5 (b — b cf ) = 0,5(2,7 — 0,9) = 0,9 м > h 0,pl = 0,9 — 0,05 = 0,85 м рабочую высоту h 0,pl можно определить также по формуле (9) с заменой b c на b cf , l c на l cf .
Вычислим значения с l и с b :
с l = 0,5 (l — l cf ) = 0,5(3,3 — 0,9) = 1,2 м; с b = 0,5 (b — b cf ) = 0,5(2,7 — 0,9) = 0,9 м; r = 1,75 (см. выше);
h 0,pl = — 0,5b cf + = — 0,5 × 0,9 +
+ = 0,60 м.
Высота ступеней назначается по табл. 4 в зависимости от полной высоты плитной части фундамента: при h pl = 0,9 h 1 = h 2 = h 3 = 0,3 м.
ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ВТОРОЙ СТУПЕНИ
ФУНДАМЕНТА
Первоначально определяем предельный вылет нижней ступени по формуле (16), приняв его одинаковым в двух направлениях (по х и по у):
с 1 = с 2 = 0,5b + (l + r)h 01 — = 0,5 × 2,7 + (1 + 1,75)(0,3 — 0,05) — = 1,35 + 0,69 — = 2,04 — 1,46 = 0,58 м.
Назначаем вылеты нижней ступени с 1 = с 2 = 0,45 м 0,58 м и соответственно размеры второй ступени фундамента:
l 1 = l — 2c 1 = 3,3 — 2 × 0,45 = 2,4 м; b 1 = b — 2c 2 = 2,7 — 2 × 0,45 = 1,8 м.
ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ТРЕТЬЕЙ СТУПЕНИ
ФУНДАМЕНТА
Размеры третьей ступени определяем по формулам (17) и (18) с заменой l c на l cf .
l 2 = (l — 2c 1 — l cf )h 3 /(h 2 + h 3 ) + l cf = (3,3 — 2 × 0,45 — 0,9)0,3/ (0,3 +0,3) + 0,9 = 1,65 м;
b 2 = (b — 2c 2 — b cf )h 3 /(h 2 + h 3 ) + b cf = (2,7 — 2 • 0,45 — 0,9) 0,3/(0,3 + 0,3) + 0,9 = 1,35 м.
Назначаем размеры третьей (верхней) ступени l 2 x b 2 = 1,5 х 0,9 м.
Выполним проверку на продавливание двух нижних ступеней от третьей ступени, так как назначенные размеры l 2 , b 2 меньше значений, полученных по формулам (17) и (18).
Проверку производим по указаниям п. 2.9 с заменой b c и l c на b 2 и l 2 и u m на b m , принимая рабочую высоту сечения
h 0,pl = h 01 + h 2 = 0,25 + 0,3 = 0,55 м;
так как b — b 2 = 2,7 — 0,9 = 1,8 м > 2h 0,pl = 2 • 0,55 = 1,1 м, то по формуле (7) b m = b 2 + h 0,pl = 0,9 + 0,55 = 1,45 м; по формуле (4) A 0 = 0,5b(l — l 2 — 2h 0,pl ) — 0,25 (b — b 2 — 2h 0,pl ) 2 = 0,5 • 2,7(3,3 — 1,5 — 2 × 0,55) — 0,25 (2,7 — 0,9 — 2 × 0,55) 2 = 0,82 м 2 ;
F = A 0 p max = 0,82 × 0,339 = 0,274 МН.
Проверяем условие прочности по продавливанию g b2 R bt b m h 0,pl = 0,9 • 0,66 • 1,45 • 0,55 = 0,474 MH > 0,274 МН, то есть условие прочности по продавливанию выполнено. Размеры фундаментов показаны на черт. 32.
ОПРЕДЕЛЕНИЕ СЕЧЕНИЙ АРМАТУРЫ ПЛИТНОЙ ЧАСТИ ФУНДАМЕНТА
Определяем изгибающие моменты и площадь рабочей арматуры подошвы фундамента А sl по формулам (46)-(57) в сечениях по граням ступеней 1-1, 2-2 и по грани подколонника 3-3, 4-4.
Расчетные усилия на уровне подошвы принимаем без учета веса фундамента по 3-му сочетанию нагрузок, определяющему p max ,
N = 2,1 МН; М = 0,336 + 0,072 • 2,4 = 0,509 МН • м; e 0 = 0,509/2,1 = 0,242 м.
Изгибающие моменты в сечениях приведены в табл. 11.
Источник