Выбор типа фундамента для металло-каркаса.
Страница 1 из 3 | 1 | 2 | 3 | > |
Следующий вопрос какой выбрать тип фундамента?
Исходные данные:
Снеговой район — 3
Ветровой — 2
Имеем каркас разработанный иностранной фирмой. Трехпролетное здание с пролетами 18м. 2 пролета высокая часть, 1 пролет низкая. Не буду вдаваться в расчетную схему. Но на фундамент под центральную колонну самая невыгодная комбинация выходит следующая:
N=-11,3т (да да, все так и есть — отрыв)
Qx=15т
Qy=12,7т
My=85т*м
для достоверности выкладываю базу. Обратите внимание на количество и диаметр болтов
Забыл сказать про грунты: просадочный суглинок первого типа с хорошим начальным просадочным давлением 0,2Мпа
ниже суглинок твердый
26.05.2011, 19:57
26.05.2011, 20:30
26.05.2011, 21:28
ростверк на буронабивных сваях ), нагрузки конечно подозрительно отрывающие )
P.S. Не знаю есть ли мостовые краны в вашем здании, но если считать с допускаемым отрывом без таковых, то размеры получаются отдельного фундамента 6х4.5 или 6.9х3.6,
27.05.2011, 11:04
В том то все и дело, что ни кранов ни дополнительных нагрузок от оборудования на каркас нет.
Сами понимаете что заказчик нас не поймет с таким размером фундаментов.
27.05.2011, 14:35
27.05.2011, 15:02
Инженер-проектировщик, по совместительству Йожыг-Оборотень
27.05.2011, 16:53
Такую выбрали расчетную схему проектировщики из-за бугра. Это единственные жеско закрепленные колонны. Все остальные — шарнир.
Перерасчитывать каркас времени нет. Но набросав по их расчетной схеме поперечную раму смысл получил такой же.
это как раз связевая колонна. При действии ветра в торец. Сам каркас считаю не я, сертификат сказали на изделие предоставят.
Мне важно чтобы фундаменты которые буду проектировать я не «улетели» и не были эпичных размеров, чтоб не шокировать заказчика.
28.05.2011, 13:10
28.05.2011, 19:17
Вы наверное подумали что это нагрузки на подошву фундамента?
Нет это нагрузки в уровне обреза фундамента (в уровне металлической базы колонны).
Если Вам так удобнее то нагрузки в уровне подошвы фундамента будут
N=-11,3т+св. фундамента
Мх=15т*1,8(глубина золожения если говорить о столбчатом)=27тм
My=85т*м+12,7*1,8=108тм
Или может я Вас неправильно понял, тогда объясните что такое 11,2 и какое плечо в 7,59м Вы имеете ввиду.
28.05.2011, 20:03
28.05.2011, 21:47
Перечитать первое сообщение все же не помешает. Каркас считает иностранная фирма. Моя задача по выданным мне сочентаниям подобрать фундамент. Самое неблагоприятное сочетание я указал. Мне вот как то не приходило в голову считать «какое же должно быть плечо».
открываете скад, лиру или любую другую расчетную программу, рисуете поперечную раму как на моей схеме, и загружаете снежком, этого вполне хватит. шаг рам 6м.
Какой момент получится от снега в такой схеме у Вас? И какое плечо?
Вложения
DWG 2000 | поперечная рама.dwg (38.8 Кб, 2721 просмотров) |
29.05.2011, 01:06
29.05.2011, 02:02
29.05.2011, 02:16
Проектирование КЖ,КМ,КД,КР и т.д.
Vinco,
Ахтунг! Это просто трындец, других слов нет. Это кто такую схему запроектировал? Схема — почти механизм. Или вы неправильно узлы трактуете.
Данных для расчета нет. Сделал примерный расчет, без учета упругих связей колонн, без пульсации ветра. Снег -240 кг /кв.м., ветер -50 кг/кв.м., металл + сэндвичи -150 кг/кв.м.
Таких моментов не наблюдается. Выложите узлы сопряжения колонн и балок, шарнирную базу.
P.s. Если не секрет какие сечения каркаса?
(снег посчитан по 4 району)
Вложения
Эпюра N и M.rar (50.6 Кб, 109 просмотров) |
29.05.2011, 04:00
Инженер-проектировщик, по совместительству Йожыг-Оборотень
29.05.2011, 09:57
100 раз звонил просил перепроверить. Говорит что так и никак иначе.
сечений каркаса не знаю.
Задайте жесткость центральной колонны много выше всех остальных. (если посмотреть на базу так оно и есть) так как скорее всего там сварной двутавр сечением почти под 1м. На моей схеме с просто снегом я почему-то получаю такие цифры. Естесственно это все грубо, но при таком закреплении общая картина прорисовывается четко.
Красными кружками обозначены шарнирные узлы. Все колонны кроме центральной — шарнир, база крепится на 2 болта или на 4, но с очень маленьким расстоянием между болтами (76мм)
[IMG]http://s59.***********/i164/1105/50/e5d3458854b4t.jpg[/IMG]
Что касается сочетания. Это 0,9FRDL+0,9SIDL+1,29SLB+1,29SNAC+1,26WLR2 (св+св стен+снег+ветер)
Если говорить об отрыве. Это связевая колонна при дествии ветра. Если говорить о связях то в одной колонне мы получаем пригруз, в другой отрыв. И связевое вертикальное усилие ВЫШЕ чем вертикальная по данному сочетанию = отрыв.
Но я же говорю что придираться к каркасу смысла нет, его не переделают, про фундаменты уже начал монолитную плиту делать.
Источник
Расчет столбчатых фундаментов металлического каркаса
Уважаемые коллеги, продолжаем рассматривать небольшие примеры использования ФОК Комплекс для расчета фундаментов. Сегодня мы рассмотрим примеры расчета столбчатых фундаментов металлического каркаса. В начале произведем ручной расчет 2-х фундаментов с дальнейшим сравнением с полученными результатами по ФОК Комплекс.
Пример расчета столбчатых фундаментов. Исходные данные
Площадка строительства характеризуется следующими атмосферно-климатическими воздействиями и нагрузками:
- вес снегового покрова (расчетное значение) — 240 кг/м 2 ;
- давление ветра — 38 кг/м 2 ;
Геология
Относительная разность осадок (Δs/L)u = 0,004;
Максимальная Sumax или средняя Su осадка = 15 см;
Нагрузки на столбчатые фундаменты получены из ПК ЛИРА.
Для ручного расчета рассмотрим фундаменты Фм3 и Фм4
Ручной расчет
Определение размеров подошвы фундамента
Основные размеры подошвы фундаментов определяем исходя из расчета оснований по деформациям. Площадь подошвы предварительно определим из условия:
где P- среднее давление по подошве фундамента, определяем по формуле:
A — площадь подошвы фундамента.
N – вертикальная нагрузка на обрезе фундамента
G – вес фундамента с грунтом на уступах
где γ — среднее значение удельного веса фундамента и грунта на его обрезах, принимаемое равным 2 т/м 3 ;
d — глубина заложения;
Для предварительного определения размеров фундаментов, P определяем по таблице В.3 [СП 22.13330.2011]
Р = 250 кПа = 25,48 т/м 2 .
Для фундамента Фм3, N = 35,049 т
A = 35,049 т / (25,48 т/м 2 — 2,00 т/м 3 · 3,300 м) = 35,049 т/18,88 т/м 2 = 1,856 м 2 .
Принимаем габариты фундамента b = 1,5 м
Для фундамента Фм4, N = 57,880 т
A = 57,880 т / (25,48 т/м 2 — 2,00 т/м 3 · 3,300 м ) = 57,880 т / 18,88 т/м 2 = 3,065 м 2 .
Принимаем габариты фундамента b = 1,8 м
1. Определение расчетного сопротивления грунта основания
5.6.7 При расчете деформаций основания фундаментов с использованием расчетных схем, указанных в 5.6.6, среднее давление под подошвой фундамента р не должно превышать расчетного сопротивления грунта основания R, определяемого по формуле
где γс1 и γс2 коэффициенты условий работы, принимаемые по таблице 5.4[1];
k— коэффициент, принимаемый равным единице, если прочностные характеристики грунта (φп и сп) определены непосредственными испытаниями, и k=1,1, если они приняты по таблицам приложения Б[1];
kz— коэффициент, принимаемый равным единице при b 3 ;
γ’II — то же, для грунтов, залегающих выше подошвы фундамента, кН/м 3 ;
сII— расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента (см. 5.6.10[1]), кПа;
d1— глубина заложения фундаментов, м, бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, определяемая по формуле (5.8)[1]. При плитных фундаментах за d1принимают наименьшую глубину от подошвы плиты до уровня планировки;
db— глубина подвала, расстояние от уровня планировки до пола подвала, м (для сооружений с подвалом глубиной свыше 2 м принимают равным 2 м);
здесь hs— толщина слоя грунта выше подошвы фундамента со стороны подвала, м;
hcf — толщина конструкции пола подвала, м;
γcf — расчетное значение удельного веса конструкции пола подвала, кН/м 3 .
При бетонной или щебеночной подготовке толщиной hn допускается увеличивать d1на hn.
Примечания
1 Формулу (5.7)[1] допускается применять при любой форме фундаментов в плане. Если подошва фундамента имеет форму круга или правильного многоугольника площадью А, значение bпринимают равным .
2 Расчетные значения удельного веса грунтов и материала пола подвала, входящие в формулу (5.7)[1] допускается принимать равными их нормативным значениям.
3 Расчетное сопротивление грунта при соответствующем обосновании может быть увеличено, если конструкция фундамента улучшает условия его совместной работы с основанием, например фундаменты прерывистые, щелевые, с промежуточной подготовкой и др.
4 Для фундаментных плит с угловыми вырезами расчетное сопротивление грунта основания допускается увеличивать, применяя коэффициент kd по таблице 5.6 [1].
5 Если d1>d (d— глубина заложения фундамента от уровня планировки), в формуле (5.7)[1] принимают d1 = d и db = 0.
6 Расчетное сопротивления грунтов основания R, определяемое по формулам (В.1)[1] и (В.2)[1] с учетом значений R0 таблиц B.1-В.10[1] приложения B[1], допускается применять для предварительного назначения размеров фундаментов в соответствии с указаниями разделов 5-6[1].
Исходные данные:
Основание фундаментом являются — суглинком лессовидным непросадочным полутвёрдой консистенции, желто-бурого цвета, с включением прослоев супеси, ожелезненный. (ИГЭ 2)
Для фундамента Фм3 : b = 1,50 м;
Для фундамента Фм4 : b = 1,80 м;
Для фундамента Фм3:
R = (1,10 ·1,00) / 1,00· [0,72 · 1,00 · 1,50 м · 1,780 т/м 3 + 3,87· 3,30 м· 1,691 т/м 3 +
+ (3,87 – 1,00) · 0,0· 1,691 т/м 3 + 6,45·1,1 т/м 2 ] = 1,10· (1,922 т/м 2 +21,596 т/м 2 +
+ 0,0 + 7,095 т/м 2 ) = 33,674 т/м 2 .
Для фундамента Фм4:
R = (1,10 ·1,00) / 1,00 · [0,72 · 1,00 · 1,80 м·1,780 т/м 3 + 3,87 · 3,30 м·1,691 т/м 3 +
+ (3,87 – 1,00) ·0,0·1,691 т/м 3 + 6,45·1,1 т/м 2 ] = 1,10 · (2,307 т/м 2 + 21,596 т/м 2 +
+ 0,0 + 7,095 т/м 2 ) = 34,098 т/м 2 .
2. Определение осадки
5.6.31 Осадку основания фундамента s, см, с использованием расчетной схемы в виде линейно деформируемого полупространства (см. 5.6.6[1]) определяют методом послойного суммирования по формуле
где b — безразмерный коэффициент, равный 0,8;
σzp,i — среднее значение вертикального нормального напряжения (далее — вертикальное напряжение) от внешней нагрузки в i-м слое грунта по вертикали, проходящей через центр подошвы фундамента (см. 5.6.32[1]), кПа;
hi — толщина i-го слоя грунта, см, принимаемая не более 0,4 ширины фундамента;
Ei — модуль деформации i-го слоя грунта по ветви первичного нагружения, кПа;
σzγ,i — среднее значение вертикального напряжения в i-м слое грунта по вертикали, проходящей через центр подошвы фундамента, от собственного веса выбранного при отрывке котлована грунта (см. 5.6.33[1]), кПа;
Ее,i — модуль деформации i-го слоя грунта по ветви вторичного нагружения, кПа;
n — число слоев, на которые разбита сжимаемая толща основания.
При этом распределение вертикальных напряжений по глубине основания принимают в соответствии со схемой, приведенной на рисунке 5.2.
DL — отметка планировки; NL — отметка поверхности природного рельефа; FL — отметка подошвы фундамента; WL — уровень подземных вод; В, С — нижняя граница сжимаемой толщи; d и dn — глубина заложения фундамента соответственно от уровня планировки и поверхности природного рельефа; b — ширина фундамента; р — среднее давление под подошвой фундамента; szg и szg,0 — вертикальное напряжение от собственного веса грунта на глубине z от подошвы фундамента и на уровне подошвы; σzp и σzp,0 — вертикальное напряжение от внешней нагрузки на глубине z от подошвы фундамента и на уровне подошвы; σzγ,i — вертикальное напряжение от собственного веса вынутого в котловане грунта в середине i-го слоя на глубине z от подошвы фундамента; Нс — глубина сжимаемой толщи
Рисунок 5.2 — Схема распределения вертикальных напряжений в линейно-деформируемом полупространстве
Примечания:
1 При отсутствии опытных определений модуля деформации Ее,i для сооружений II и III уровней ответственности допускается принимать Ее,i = 5Еi.
2 Средние значения напряжений σzp,i и σzγ,i в i-м слое грунта допускается вычислять как полусумму соответствующих напряжений на верхней zi-1 и нижней zi границах слоя.
5.6.32 Вертикальные напряжения от внешней нагрузки σzp = σz — σzu зависят от размеров, формы и глубины заложения фундамента, распределения давления на грунт по его подошве и свойств грунтов основания. Для прямоугольных, круглых и ленточных фундаментов значения szp, кПа, на глубине z от подошвы фундамента по вертикали, проходящей через центр подошвы, определяют по формуле
где α — коэффициент, принимаемый по таблице 5.8[1] в зависимости от относительной глубины ξ, равной 2z/b;
р — среднее давление под подошвой фундамента, кПа.
5.6.33 Вертикальное напряжение от собственного веса грунта на отметке подошвы фундамента σzγ = σzγ — σzu, кПа, на глубине z от подошвы прямоугольных, круглых и ленточных фундаментов определяют по формуле
где α — то же, что и в 5.6.32[1];
szg,0 — вертикальное напряжение от собственного веса грунта на отметке подошвы фундамента, кПа (при планировке срезкой σzg,0 = γ‘d, при отсутствии планировки и планировке подсыпкой σzγ,0 = γ‘dn, где γ‘ — удельный вес грунта, кН/м 3 , расположенного выше подошвы; d и dn, м, — см. рисунок 5.2[1]).
При этом в расчете σzγ используются размеры в плане не фундамента, а котлована.
5.6.34 При расчете осадки фундаментов, возводимых в котлованах глубиной менее 5 м, допускается в формуле (5.16) не учитывать второе слагаемое.
5.6.41 Нижнюю границу сжимаемой толщи основания принимают на глубине z = Нc, где выполняется условие σzp = 0,5σzγ. При этом глубина сжимаемой толщи не должна быть меньше Нmin, равной b/2 при b ≤ 10 м, (4 + 0,1b) при 10 ≤ b ≤ 60 м и 10 м при b > 60 м.
Если в пределах глубины Нс, найденной по указанным выше условиям, залегает слой грунта с модулем деформации Е > 100 МПа, сжимаемую толщу допускается принимать до кровли этого грунта.
Если найденная по указанным выше условиям нижняя граница сжимаемой толщи находится в слое грунта с модулем деформации Е ≤ 7 МПа или такой слой залегает непосредственно ниже глубины z = Нс, то этот слой включают в сжимаемую толщу, а за Нс принимают минимальное из значений, соответствующих подошве слоя или глубине, где выполняется условие σzp = 0,2szγ.
При расчете осадки различных точек плитного фундамента глубину сжимаемой толщи допускается принимать постоянной в пределах всего плана фундамента (при отсутствии в ее составе грунтов с модулем деформации Е > 100 МПа).
Площадь подошвы фундамента Фм3: S = 2,25 м 2 (габариты 1,50 м × 1,50 м).
Нормативная нагрузка от конструкций N = 29,208 т
при b = 1,5 м ≤ 10 м
Таблица: Осадка фундамента Фм3
Сжимаемая толща основания H = 2,00 м > Hmin = 0,75 м
Осадка фундамента: S = 0,8·0,049 м = 0,0392 м (3,92 см) 2 (габариты 1,80 м × 1,80 м).
Нормативная нагрузка от конструкций N = 47,598 т
при b = 1,8 м ≤ 10 м
Таблица: Осадка фундамента Фм4
Сжимаемая толща основания H = 2,00 м > Hmin = 0,90 м
Осадка фундамента: S = 0,8· 0,061 м = 0,0488 м (4,88 см) p ср = N0 / A = (35,049 т + 2,00 т/м 3 · 3,300 м · 1,500 м · 1,500 м) / (2,250 м 2 ) =
= 49,899 т / 2,250 м 2 = 22,177 т/м 2
QI = 22,177 т/м 2 · 1,50 м · ( 1,50 м – 0,40 м) / 2 = 18,296025 т
QII = 22,177 т/м 2 · 1,50 м · ( 1,50 м – 0,90 м) / 2 = 9,97965 т
Проверяем выполнение условий (2.26)[2], для бетона класса В15,
18,296025 т 2 · 1,5 м · (3,600 м – 0,040 м)
18,296025 т 2 · 1,5 м · (0,300 м – 0,040 м)
9,97965 т 2 · (1,50 м – 0,40 м) 2 · 1,50 м = 5,0314 тм
МII = 0,125 · 22,177 т/м 2 · (1,50 м – 0,90 м) 2 · 1,50 м = 1,4969 тм
В качестве рабочих стержней примем арматуру класса A-III с расчетным сопротивлением Rs = 37206,93 т/м 2 .
Требуемая площадь сечения арматуры по формуле (2.32)[2]
АsI = 5,0314 тм / (0,9 · (3,600 м – 0,040 м) · 37206,93 т/м 2 ) =
= 5,0314 тм / 119211,00372 т/м 2 = 0,000042 м 2 = 0,42 см 2 .
АsII = 1,4969 тм / (0,9 · (0,300 м – 0,040 м) · 37206,93 т/м 2 ) =
= 1,4969 тм / 8706,421 т/м 2 = 0,000172 м 2 = 1,72 см 2 .
Принимаем 8 Ø10 A-III Аs = 6,280 см 2 , шаг 200 мм.
Для фундамента Фм4
Поперечная сила у грани колонны и грани подошвы (2.25) [2]:
p p ср = N0 / A = (57,880 т + 2,00 т/м 3 · 3,300 м · 1,800 м · 1,800 м) / (3,240 м 2 ) =
= 79,264 т / 3,240 м 2 = 24,464 т/м 2
QI = 24,464 т/м 2 · 1,80 м · ( 1,80 м – 0,40 м) / 2 = 30,82464 т
QII = 24,464 т/м 2 · 1,80 м · ( 1,80 м – 0,90 м) / 2 = 19,81584 т
Проверяем выполнение условий (2.26)[2], для бетона класса В15,
30,82464 т 2 · 1,8 м · (3,600 м – 0,040 м)
30,82464 т 2 · 1,8 м · (0,300 м – 0,040 м)
19,81584 т 2 · (1,80 м – 0,40 м) 2 · 1,80 м = 17,050 тм
МII = 0,125 · 24,464 т/м 2 · (1,80 м – 0,90 м) 2 · 1,80 м = 4,458 тм
В качестве рабочих стержней примем арматуру класса A-III с расчетным сопротивлением Rs = 37206,93 т/м 2 .
Требуемая площадь сечения арматуры по формуле (2.32)[2]
АsI = 17,054 тм / (0,9 · (3,600 м – 0,040 м) · 37206,93 т/м 2 ) =
= 17,054 тм / 119211,00372 т/м 2 = 0,000143 м 2 = 1,43 см 2 .
АsII = 4,458 тм / (0,9 · (0,300 м – 0,040 м) · 37206,93 т/м 2 ) =
= 4,458 тм / 8706,421 т/м 2 = 0,000512 м 2 = 5,12 см 2 .
Принимаем 9 Ø10 A-III Аs = 7,065 см 2 , шаг 200 мм.
Относительная разность осадок (4,88 см – 3,92 см) / 600 см = 0,0016
Источник