Фундаменты промышленных зданий реферат

Основания и фундаменты промышленных зданий — реферат по строительству

  • Тип: Реферат
  • Предмет: Строительство
  • Все рефераты по строительству »
  • Язык: Русский
  • Автор: Admin
  • Дата: 24 дек 2010
  • Формат: RTF
  • Размер: 2 Мб
  • Страниц: 31
  • Слов: 5294
  • Букв: 35365
  • Просмотров за сегодня: 1
  • За 2 недели: 9
  • За все время: 808

Тезисы:

  • Грунты как основания сооружений.
  • Сваи и свайные фундаменты.
  • Жесткие фундаменты неглубокого заложения.
  • Устройство искусственных оснований.
  • Под воздействием нагрузок от сооружения основание деформируется.
  • Основание, полученное таким способом, называют искусственным.
  • В соответствии с этим фундаменты могут иметь различные конструктивные формы.
  • Основные виды конструкций фундаментов представлены на рис.
  • При проектировании фундаментов рекомендуется вводить в расчет некоторый запас жесткости.
  • Это объясняется особенностями работы фундаментов.

Похожие работы:

632 Кб / 48 стр / 4162 слов / 23650 букв / 4 янв 2013

2 Мб / 55 стр / 2766 слов / 18264 букв / 8 мар 2013

287 Кб / 34 стр / 2876 слов / 17522 букв / 25 сен 2016

90 Кб / 40 стр / 4251 слов / 27186 букв / 8 мая 2015

318 Кб / 34 стр / 3717 слов / 20085 букв / 6 мая 2017

78 Кб / 23 стр / 2246 слов / 12732 букв / 21 окт 2020

176 Кб / 23 стр / 2536 слов / 14875 букв / 19 апр 2014

163 Кб / 42 стр / 1914 слов / 11479 букв / 29 авг 2015

Читайте также:  Можно ли бурить фундамент силикатным кирпичом

33 Кб / 21 стр / 4416 слов / 14983 букв / 15 апр 1999

412 Кб / 28 стр / 3973 слов / 24251 букв / 19 дек 2013

Источник

Основания и фундаменты промышленных зданий

Главная > Реферат >Строительство

Реферат на тему:

«Основания и фундаменты промышленных зданий»

Казань, 2009 год.

I . Грунты как основания сооружений.

1. Предварительные сведения

2. Строительная классификация грунтов

3. Основные физические характеристики грунтов

4. Физическое состояние воды в порах грунта

II .Жесткие фундаменты неглубокого заложения.

2.Конструктивные формы сборных фундаментов

3.Ленточные сборные фундаменты под стены

III . Сваи и свайные фундаменты.

1.Назначение и работа свай

2.Основы классификации свай

3.Характеристики отдельных видов забивных свай

4.Основные виды набивных свай

IV . Устройство искусственных оснований.

1.Виды искусственных оснований

2.Уплотнение грунтов механическими воздействиями

3.Устройство песчаных и грунтовых подушек

4.Физико-химическое закрепление грунтов

I . ГРУНТЫ КАК ОСНОВАНИЯ СООРУЖЕНИЙ

1. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ

Часть сооружения, расположенная ниже поверхности земли и предназначенная для передачи нагрузок от сооружения на его основание, называется фундаментом. В случаях, когда местность покрыта водой, фундаментом называют часть сооружения ниже поверхности воды. Роль фундамента заключается в аккумулировании нагрузок от сооружения и передаче их на грунты основания. Основанием сооружения называется массив грунта, воспринимающий передаваемую на него нагрузку от сооружения и испытывающий от этой нагрузки практически ощутимые напряжения и деформации. Под воздействием нагрузок от сооружения основание деформируется. Эти деформации обусловливают дополнительные напряжения и деформации в самом сооружении и могут вызвать нежелательные изменения его положения в пространстве. Чем меньше и чем равномернее деформируется основание, тем выше его строительные качества, тем меньше будут дополнительные напряжения и деформации в самом сооружении, тем меньше будет оно изменять свою форму и положение в пространстве. Если строительные качества грунта основания таковы, что его можно загружать без какой-либо сложной предварительной подготовки, то основание называется естественным. Во многих случаях давление, передаваемое на основание, настолько велико по сравнению с несущей способностью грунта, что снизить его простым увеличением подошвы фундамента невозможно или нецелесообразно. Такие грунты называют слабыми для данного сооружения. Использовать слабые грунты в качестве основания сооружения можно, только предварительно повысив их несущую способность специальной обработкой. Основание, полученное таким способом, называют искусственным.

2. СТРОИТЕЛЬНАЯ КЛАССИФИКАЦИЯ ГРУНТОВ

Горные породы, рассматриваемые в качестве сферы действия инженерно геологических и инженерно строительных процессов и явлений и в том числе в качестве оснований сооружений, принято называть грунтами. При изучении горных пород в инженерно-строительных целях на первый план выступает их сопротивление действующим механическим усилиям (нагрузкам от сооружений). Сопротивление внешней нагрузке в значительной мере зависит от характера и прочности связей между частицами породы. Можно наметить четыре основных вида связей между частицами горных пород:

1) жесткие прочные связи, не изменяющиеся при увлажнении породы;

2) жесткие прочные связи, ослабляющиеся при увлажнении;

3) подвижные водноколлоидные связи, резко изменяющие свою прочность под влиянием увлажнения или осушения породы;

4) отсутствие связей; в этом случае взаимному перемещению частиц породы препятствуют только силы трения между ними. В соответствии с этим все горные породы делят на два основных класса: скальные и нескальные. К скальным относятся все горные породы с жесткими связями между частицами. Эти связи могут быть кристаллизационными, возникающими в процессе формирования породы, и цементационными, образованными цементирующими растворами в процессах сингенеза и диагенеза. Вследствие этого к скальным горным породам относятся магматические, метаморфические и сцементированные осадочные породы. У некоторых скальных пород, в основном осадочного происхождения, кристаллизационные связи легко ослабляются при увлажнении и частично заменяются подвижными водноколлоидными связями. Эту группу пород называют полускальными. Нескальные горные породы, у которых между частицами существуют подвижные водноколлоидные связи, называют связными, а нескальные, не имеющие связей между частицами, — несвязными, или раздельно- зернистыми. Следует отметить, что в инженерно-строительной литературе при рассмотрении горных пород как грунтов, как правило, грунтами называют нескальные горные породы. Что же касается скальных и полускальных грунтов, то их в одинаковой мере называют и грунтами и горными породами.

3. ОСНОВНЫЕ ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ГРУНТОВ

Основная масса минеральных частиц нескальных грунтов состоит из окиси кремния (кремнезема) и окиси алюминия (глинозема). Кроме этих основных компонентов в грунтах содержатся примеси других окислов и солей, но обычно в небольших количествах, не влияющих на их основные свойства. Частицы кремнезема (SiO2)’ вместе с примесями, входящими в состав минерала, образуют жесткие зерна неправильной формы, угловатые или окатанные, размером 0,01—10 мм и более. Частицы глинозема входят в состав различных глинистых минералов общего типа A l 2 O 3 ∙ n SiO 2 ∙ m R 2 O, где R 2 —водород или одновалентный металл. Глинистые частицы в отличие от песчаных образуют не зерна, а тончайшие чешуйки, наибольшие размеры которых не превышают 0,005 мм. В грунтах между отдельными минеральными частицами есть пустоты — поры, заполненные водой или воздухом. Различают три вида систем нескальных грунтов:

1) трехкомпонентная, состоящая из минеральных частиц (минерального скелета) и пор, заполненных частично водой и частично воздухом;

2) двухкомпонентная, состоящая из минерального скелета и пор, полностью заполненных водой;

3) двухкомпонентная, иногда неправильно называемая однокомпонентной, состоящая из минерального скелета и пор, заполненных только воздухом.

Если обозначить объем грунта естественного сложения Vr, объем минеральных частиц V CK , объем пор Vn, общую массу минерального скелета и поровой воды Мт, массу минеральных частиц Мск и массу воды в порах грунта Мв, то можно записать: Vr = V CK + Vn и Мг=Мск+Мв.

Основными физическими свойствами, характеризующими грунт, являются:

1) плотность грунта р, т. е. отношение массы минеральных частиц грунта к массе воды при 4 о С в объеме, равном объему минеральных частиц, г/см 3 :

2) объемная масса грунта ∆о, т. е. отношение массы данного объема к массе воды в объеме всего образца, г/см 3 :

3) объемная масса твердой фазы (скелета) грунта ∆ ск , т. е. отношение массы абсолютно сухого грунта к массе воды в объеме всего образца при данной пористости, г/см 3 :

4)пористость грунта n — отношение в долях единицы объема пор к объему всего образца:

n = Vn / Vr = Vn /( V CK + Vn )

5) коэффициент пористости грунта ε — отношение объема пор в грунте к объему минеральных частиц:

ε= Vn / V CK = Vn /( Vr — Vn )

6) влажность грунта W—отношение (в долях единицы) массы воды в порах грунта к массе минеральных частиц:

W = Мв/ Мск= (Мг-Мск)/ Мск

7) степень (коэффициент) влажности грунта G — отношение объема воды в порах грунта к объему:

G = V в/ Vr = V в/ ( Vr — V CK )= pW / ε p в

На практике определяют экспериментом плотность, объемную массу и влажность грунта. Из этих же формул можно вывести взаимную зависимость между пористостью и коэффициентом пористости и выражение для объема скелета грунта. Зависимость между пористостью и коэффициентом пористости выражается равенствами:

n = ε/(1+ ε) и ε = n /(1- n )

Объем скелета грунта:

4. ФИЗИЧЕСКОЕ СОСТОЯНИЕ ВОДЫ В ПОРАХ ГРУНТОВ

В порах грунтов вода может находиться в различных физических состояниях. Различают следующие виды воды в порах грунтов:

1) парообразная, заполняющая части пор грунта, свободные от волы;

2) вода в твердом состоянии (лед);

3) гигроскопическая и пленочная вода, образующаяся на поверхности частиц в виде пленок различной толщины, более или менее прочно с нею связанных. По своим свойствам она отлична от обычной жидкой воды (например, не передвигается под действием силы тяжести). Поскольку гигроскопическая и пленочная вода не свободна в своем передвижении, ее назвали физически связанной водой;

4) гравитационная, или свободная вода. Обладает свойствами жидкой воды, передвигается в грунтах под действием силы тяжести. Такая вода может быть подразделена на собственносвободную и капиллярную, образующую капиллярную зону над поверхностью грунтовых вод, и связанную (капиллярно-поднятая вода) или не связанную (капиллярно-подвешенная вода) с грунтовыми водами.

II . ЖЕСТКИЕ ФУНДЕМЕНТЫ НЕГЛУБОГО ЗАЛОЖЕНИЯ

1. ВИДЫ ФУНДАМЕНТОВ

Фундаменты, возводимые в открытых рвах и котлованах глубиной в среднем до 5—6 м, принято называть фундаментами неглубокого заложения. 489 Фундаменты должны быть достаточно прочны, долговечны, устойчивы против воздействий мороза и агрессивности грунтовых вод. Фундаменты должны быть возведены с учетом физических и механических свойств грунтов основания и местных инженерно-геологических процессов и явлений. Размеры фундаментов в плане должны быть такими, чтобы среднее давление от расчетных нагрузок по подошве фундамента не превосходило расчетного давления на грунт, а расчетные значения абсолютных осадок и разностей осадок между отдельными фундаментами одного сооружения не превосходили предельных значений, установленных нормами проектирования. Контур фундамента в плане, как правило, повторяет упрощенной форме контур плана надфундаментных частей здания или сооружения. В соответствии с этим фундаменты могут иметь различные конструктивные формы. Фундаменты массивных сооружений (мостовыхопор, монументов и т. п.) выполняют в виде отдельных массивов. Фундаменты отдельных опор (колонн) могут быть устроены под каждую колонну отдельно (отдельные, одиночные или столбовые фундаменты) или общими под несколько колонн и иметь вид лент (ленточные фундаменты), перекрестных лент и плит (ребристых и безреберных). Фундаменты стен могут быть устроены в виде отдельных фундаментных столбов, перекрытых фундаментной балкой (рандбалкой), или подземных стенок, повторяющих план стен. Их называют стеновыми, хотя в литературе их часто называют ленточными, так как по своей форме они не отличаются от ленточных фундаментов, устраиваемых под несколько колонн. Основные виды конструкций фундаментов представлены на рис. 29.1. В конструкции каждого фундамента есть две характерные плоскости: верхняя, на которую опирается сооружение, и нижняя — плоскость контакта конструкции фундамента с грунтом основания. Верхняя плоскость носит название плоскости обреза фундамента, а нижняя — плоскости подошвы фундамента (рис. 29.2). Сопротивление материала фундамента нагрузке, как правило, значительно выше, чем сопротивление грунта основания. Поэтому размер площади подошвы фундамента всегда больше, чем размер площади обреза, и только в очень редких случаях эти размеры могут быть равны между собой.

Источник

Основания и фундаменты промышленных зданий

Грунты как основания сооружений. Основные физические характеристики грунтов. Жесткие фундаменты неглубокого заложения. Конструктивные формы сборных фундаментов. Ленточные сборные фундаменты под стены. Характеристики отдельных видов забивных свай.

Рубрика Строительство и архитектура
Вид реферат
Язык русский
Дата добавления 17.12.2010
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат на тему:

«Основания и фундаменты промышленных зданий»

Казань, 2009 год.

I. Грунты как основания сооружений.

1. Предварительные сведения

2. Строительная классификация грунтов

3. Основные физические характеристики грунтов

4. Физическое состояние воды в порах грунта

II.Жесткие фундаменты неглубокого заложения.

2.Конструктивные формы сборных фундаментов

3.Ленточные сборные фундаменты под стены

III. Сваи и свайные фундаменты.

1.Назначение и работа свай

2.Основы классификации свай

3.Характеристики отдельных видов забивных свай

4.Основные виды набивных свай

IV. Устройство искусственных оснований.

1.Виды искусственных оснований

2.Уплотнение грунтов механическими воздействиями

3.Устройство песчаных и грунтовых подушек

4.Физико-химическое закрепление грунтов

I. ГРУНТЫ КАК ОСНОВАНИЯ СООРУЖЕНИЙ

1. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ

Часть сооружения, расположенная ниже поверхности земли и предназначенная для передачи нагрузок от сооружения на его основание, называется фундаментом. В случаях, когда местность покрыта водой, фундаментом называют часть сооружения ниже поверхности воды. Роль фундамента заключается в аккумулировании нагрузок от сооружения и передаче их на грунты основания. Основанием сооружения называется массив грунта, воспринимающий передаваемую на него нагрузку от сооружения и испытывающий от этой нагрузки практически ощутимые напряжения и деформации. Под воздействием нагрузок от сооружения основание деформируется. Эти деформации обусловливают дополнительные напряжения и деформации в самом сооружении и могут вызвать нежелательные изменения его положения в пространстве. Чем меньше и чем равномернее деформируется основание, тем выше его строительные качества, тем меньше будут дополнительные напряжения и деформации в самом сооружении, тем меньше будет оно изменять свою форму и положение в пространстве. Если строительные качества грунта основания таковы, что его можно загружать без какой-либо сложной предварительной подготовки, то основание называется естественным. Во многих случаях давление, передаваемое на основание, настолько велико по сравнению с несущей способностью грунта, что снизить его простым увеличением подошвы фундамента невозможно или нецелесообразно. Такие грунты называют слабыми для данного сооружения. Использовать слабые грунты в качестве основания сооружения можно, только предварительно повысив их несущую способность специальной обработкой. Основание, полученное таким способом, называют искусственным.

2. СТРОИТЕЛЬНАЯ КЛАССИФИКАЦИЯ ГРУНТОВ

Горные породы, рассматриваемые в качестве сферы действия инженерно геологических и инженерно строительных процессов и явлений и в том числе в качестве оснований сооружений, принято называть грунтами. При изучении горных пород в инженерно-строительных целях на первый план выступает их сопротивление действующим механическим усилиям (нагрузкам от сооружений). Сопротивление внешней нагрузке в значительной мере зависит от характера и прочности связей между частицами породы. Можно наметить четыре основных вида связей между частицами горных пород:

1) жесткие прочные связи, не изменяющиеся при увлажнении породы;

2) жесткие прочные связи, ослабляющиеся при увлажнении;

3) подвижные водноколлоидные связи, резко изменяющие свою прочность под влиянием увлажнения или осушения породы;

4) отсутствие связей; в этом случае взаимному перемещению частиц породы препятствуют только силы трения между ними. В соответствии с этим все горные породы делят на два основных класса: скальные и нескальные. К скальным относятся все горные породы с жесткими связями между частицами. Эти связи могут быть кристаллизационными, возникающими в процессе формирования породы, и цементационными, образованными цементирующими растворами в процессах сингенеза и диагенеза. Вследствие этого к скальным горным породам относятся магматические, метаморфические и сцементированные осадочные породы. У некоторых скальных пород, в основном осадочного происхождения, кристаллизационные связи легко ослабляются при увлажнении и частично заменяются подвижными водноколлоидными связями. Эту группу пород называют полускальными. Нескальные горные породы, у которых между частицами существуют подвижные водноколлоидные связи, называют связными, а нескальные, не имеющие связей между частицами, — несвязными, или раздельно- зернистыми. Следует отметить, что в инженерно-строительной литературе при рассмотрении горных пород как грунтов, как правило, грунтами называют нескальные горные породы. Что же касается скальных и полускальных грунтов, то их в одинаковой мере называют и грунтами и горными породами.

3. ОСНОВНЫЕ ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ГРУНТОВ

Основная масса минеральных частиц нескальных грунтов состоит из окиси кремния (кремнезема) и окиси алюминия (глинозема). Кроме этих основных компонентов в грунтах содержатся примеси других окислов и солей, но обычно в небольших количествах, не влияющих на их основные свойства. Частицы кремнезема (SiO2)’ вместе с примесями, входящими в состав минерала, образуют жесткие зерна неправильной формы, угловатые или окатанные, размером 0,01—10 мм и более. Частицы глинозема входят в состав различных глинистых минералов общего типа Al 2O3•nSiO2 •mR2O, где R2—водород или одновалентный металл. Глинистые частицы в отличие от песчаных образуют не зерна, а тончайшие чешуйки, наибольшие размеры которых не превышают 0,005 мм. В грунтах между отдельными минеральными частицами есть пустоты — поры, заполненные водой или воздухом. Различают три вида систем нескальных грунтов:

1) трехкомпонентная, состоящая из минеральных частиц (минерального скелета) и пор, заполненных частично водой и частично воздухом;

2) двухкомпонентная, состоящая из минерального скелета и пор, полностью заполненных водой;

3) двухкомпонентная, иногда неправильно называемая однокомпонентной, состоящая из минерального скелета и пор, заполненных только воздухом.

Если обозначить объем грунта естественного сложения Vr, объем минеральных частиц VCK, объем пор Vn, общую массу минерального скелета и поровой воды Мт, массу минеральных частиц Мск и массу воды в порах грунта Мв, то можно записать: Vr = VCK+ Vn и Мг=Мск+Мв.

Основными физическими свойствами, характеризующими грунт, являются:

1) плотность грунта р, т. е. отношение массы минеральных частиц грунта к массе воды при 4 о С в объеме, равном объему минеральных частиц, г/см 3 :

2) объемная масса грунта ?о, т. е. отношение массы данного объема к массе воды в объеме всего образца, г/см 3 :

3) объемная масса твердой фазы (скелета) грунта ? ск , т. е. отношение массы абсолютно сухого грунта к массе воды в объеме всего образца при данной пористости, г/см 3 :

4)пористость грунта n — отношение в долях единицы объема пор к объему всего образца:

5) коэффициент пористости грунта е — отношение объема пор в грунте к объему минеральных частиц:

6) влажность грунта W—отношение (в долях единицы) массы воды в порах грунта к массе минеральных частиц:

W= Мв/ Мск= (Мг-Мск)/ Мск

7) степень (коэффициент) влажности грунта G — отношение объема воды в порах грунта к объему:

На практике определяют экспериментом плотность, объемную массу и влажность грунта. Из этих же формул можно вывести взаимную зависимость между пористостью и коэффициентом пористости и выражение для объема скелета грунта. Зависимость между пористостью и коэффициентом пористости выражается равенствами:

n= е/(1+ е) и е = n/(1-n)

Объем скелета грунта:

4. ФИЗИЧЕСКОЕ СОСТОЯНИЕ ВОДЫ В ПОРАХ ГРУНТОВ

В порах грунтов вода может находиться в различных физических состояниях. Различают следующие виды воды в порах грунтов:

1) парообразная, заполняющая части пор грунта, свободные от волы;

2) вода в твердом состоянии (лед);

3) гигроскопическая и пленочная вода, образующаяся на поверхности частиц в виде пленок различной толщины, более или менее прочно с нею связанных. По своим свойствам она отлична от обычной жидкой воды (например, не передвигается под действием силы тяжести). Поскольку гигроскопическая и пленочная вода не свободна в своем передвижении, ее назвали физически связанной водой;

4) гравитационная, или свободная вода. Обладает свойствами жидкой воды, передвигается в грунтах под действием силы тяжести. Такая вода может быть подразделена на собственносвободную и капиллярную, образующую капиллярную зону над поверхностью грунтовых вод, и связанную (капиллярно-поднятая вода) или не связанную (капиллярно-подвешенная вода) с грунтовыми водами.

II. ЖЕСТКИЕ ФУНДЕМЕНТЫ НЕГЛУБОГО ЗАЛОЖЕНИЯ

1. ВИДЫ ФУНДАМЕНТОВ

Фундаменты, возводимые в открытых рвах и котлованах глубиной в среднем до 5—6 м, принято называть фундаментами неглубокого заложения. 489 Фундаменты должны быть достаточно прочны, долговечны, устойчивы против воздействий мороза и агрессивности грунтовых вод. Фундаменты должны быть возведены с учетом физических и механических свойств грунтов основания и местных инженерно-геологических процессов и явлений. Размеры фундаментов в плане должны быть такими, чтобы среднее давление от расчетных нагрузок по подошве фундамента не превосходило расчетного давления на грунт, а расчетные значения абсолютных осадок и разностей осадок между отдельными фундаментами одного сооружения не превосходили предельных значений, установленных нормами проектирования. Контур фундамента в плане, как правило, повторяет упрощенной форме контур плана надфундаментных частей здания или сооружения. В соответствии с этим фундаменты могут иметь различные конструктивные формы. Фундаменты массивных сооружений (мостовыхопор, монументов и т. п.) выполняют в виде отдельных массивов. Фундаменты отдельных опор (колонн) могут быть устроены под каждую колонну отдельно (отдельные, одиночные или столбовые фундаменты) или общими под несколько колонн и иметь вид лент (ленточные фундаменты), перекрестных лент и плит (ребристых и безреберных). Фундаменты стен могут быть устроены в виде отдельных фундаментных столбов, перекрытых фундаментной балкой (рандбалкой), или подземных стенок, повторяющих план стен. Их называют стеновыми, хотя в литературе их часто называют ленточными, так как по своей форме они не отличаются от ленточных фундаментов, устраиваемых под несколько колонн. Основные виды конструкций фундаментов представлены на рис. 29.1. В конструкции каждого фундамента есть две характерные плоскости: верхняя, на которую опирается сооружение, и нижняя — плоскость контакта конструкции фундамента с грунтом основания. Верхняя плоскость носит название плоскости обреза фундамента, а нижняя — плоскости подошвы фундамента (рис. 29.2). Сопротивление материала фундамента нагрузке, как правило, значительно выше, чем сопротивление грунта основания. Поэтому размер площади подошвы фундамента всегда больше, чем размер площади обреза, и только в очень редких случаях эти размеры могут быть равны между собой.

Следовательно, боковые грани фундамента должны быть наклонными или ступенчатыми (рис. 29.3). Если уширение фундаментов к низу незначительно (рис. 29.3,а), то в теле фундамента возникают только напряжения сжатия. Если же консольные уширения фундамента достаточно велики, то под действием реактивного давления грунта они изгибаются и в них возникают растягивающие и скалывающие напряжения (рис. 29.3,6). Различают две основные группы фундаментов:

1) жесткие, в которых растягивающие и скалывающие напряжения отсутствуют или настолько малы, что ими можно пренебречь;

2) гибкие, испытывающие значительные растягивающие и скалывающие напряжения.

Опытами установлено, что может быть найдено значение предельного уширения фундамента, при котором растягивающих и скалывающих напряжений в теле фундамента совсем не будет или они настолько малы, что ими можно пренебречь. Это значение предельного уширения фундамента зависит от материала, из которого устраивается фундамент, и обычно выражается через угол уширения или тангенс этого угла. Тангенс угла уширения a равен отношению размера уширения (размера выноса консоли) к высоте конструкции фундамента (см. рис. 29.2 и 29.3).

Так как угол предельного уширения фундамента апр определяет контур, в границах которого фундамент будет жестким, то он носит название угла жесткости. При проектировании фундаментов рекомендуется вводить в расчет некоторый запас жесткости. Этот запас учитывается заменой предельных углов жесткости а н нормативным.

В качестве материалов для устройства фундаментов могут применяться железобетон, бетон, бутобетон, каменная (бутовая или кирпичная) кладка. Каменную кладку, бутобетон и бетон применяют в более или менее одинаковых условиях, в конструкциях жестких фундаментов. Необходимость применения железобетона определяется наличием в конструкции фундамента растягивающих или скалывающих напряжений. Поэтому железобетон применяют при устройстве гибких фундаментов, а также для изготовления конструкций сборных фундаментов.

2. КОНСТРУКТИВНЫЕ ФОРМЫ СБОРНЫХ ФУНДАМЕНТОВ

Применение сборных элементов в фундаментостроении началось несколько позже, чем в строительстве наземных конструкций. Это объясняется особенностями работы фундаментов. В 1933—1935 гг. автором в его исследованиях была показана полная возможность перехода к устройству фундаментов из сборных элементов и предложена методика их проектирования. Основную трудность перехода на фундаменты из сборных элементов составляет проектирование такого набора типоразмеров блоков, при котором удовлетворяются требования соответствия площади подошвы фундамента несущей способности грунта и требования жесткости конструкции. В зависимости от конструктивной схемы здания сборные фундаменты могут осуществляться в виде сплошных ленточных фундаментов под стены, отдельных фундаментов-столбов, нагрузка на которые передается через рандбалки, и одиночных фундаментов под отдельные опоры (столбы или колонны). Кроме того, в самое последнее время получили распространение так называемые прерывистые ленточные фундаменты под стены. В таких фундаментах верхняя часть, выкладываемая из блоков, образует непрерывную стенку-ленту, а нижняя образуется из блоков-подушек, укладываемых с некоторыми промежутками. Рассматривая конструкции сборных фундаментов, можно установить, что для их устройства необходимо два основных типа сборных элементов:

1) блоки, обеспечивающие необходимую площадь передачи давления на грунт;

2) блоки, обеспечивающие необходимую конструктивную высоту фундамента в целом.

Первый тип элементов, укладываемых непосредственно на грунт или на подготовку из песка или тощего бетона, получил название блоков-подушек. Элементы, служащие для возведения основной конструкции фундамента, называются стеновыми блоками, поскольку в ленточных фундаментах они образуют подземную стенку, представляющую собой продолжение наземной стены здания. Блоки фундаментов, на которые непосредственно опираются колонны, называют башмаками. Конструктивные формы, размеры и материалы самих фундаментных блоков весьма разнообразны. В качестве материала для блоков применяют бетон и железобетон. Марки бетона для изготовления фундаментных блоков- подушек назначают в зависимости от водонасыщенности грунта основания. Блоки-подушки изготовляют трех типов: в виде прямоугольных параллелепипедов (рис. 29.4); плит, имеющих в одном направлении трапециевидное, а в другом — прямоугольное сечение (рис. 29.4,6, г), и плит, имеющих трапециевидное сечение в двух направлениях (рис. 29.4, в). Блоки-подушки, как правило, делают сплошными, причем блоки, представленные на рис. 29.4, а, — бетонными, а все остальные — железобетонными. В ленточных (стеновых) сборных фундаментах номинальная толщина шва между блоками принята равной 20 мм. Поэтому длина блока (размер по длине стены) принимается такой, чтобы вместе со швами получались размеры, кратные целым дециметрам. В прерывистых сборных фундаментах зазор между блоками определяется по расчету и достигает 900 мм.

Стеновые блоки, как правило, представляют собой прямоугольные параллелепипеды, размеры которых должны соответствовать утвержденной номенклатуре. Общий вид такого стенового блока представлен на рис. 29.5.

В пределах утвержденной номенклатуры блоков отдельными строительными и научно-исследовательскими организациями разработаны различные конструктивные варианты. Разработка вариантов конструкций блоков в основном имела цель заменить сплошные полнотелые блоки пустотелыми.

3. ЛЕНТОЧНЫЕ СБОРНЫЕ ФУНДАМЕНТЫ ПОД СТЕНЫ

Блоки-подушки ленточных фундаментов проектируют в соответствии с приведенной выше номенклатурой и основными габаритными размерами. Конструктивную высоту блоков-подушек принимают в пределах 300— 500 мм. Стеновые блоки ленточных фундаментов могут быть запроектированы в виде прямоугольных брусков или плит-панелей, высота которых соответствует всей высоте фундамента. В зданиях, имеющих подвалы, высота фундаментных плит-панелей должна быть равна высоте подвала (рис. 29.6). При кладке фундаментов из сборных блоков обязательна перевязка швов не менее чем на треть длины блока. Кроме того, горизонтальный шов между блоком- подушкой и стеновым блоком следует армировать стальными стержнями диаметром 5—8 мм. Точно так же необходимо армировать горизонтальный шов в плоскости обреза фундамента. В случаях, когда применяют пустотелые блоки, стержни арматуры должны проходить под опорными частями блоков (рис. 29.7).

4. ПРЕРЫВИСТЫЕ ФУНДАМЕНТЫ

Размеры фундаментных блоков-подушек, как правило, не совпадают с необходимыми размерами площади фундамента, полученной расчетом. В таких случаях ширина блока-подушки получается больше расчетной ширины фундамента. Чтобы уравнять расчетную площадь фундамента и площадь, получающуюся при укладке блоков, разрешается укладывать блоки с разрывами между ними. В качестве примера на рис. 29.8 показан фундамент под стену с расчетными размерами и эквивалентный ему прерывистый фундамент из блоков. В первом приближении можно считать, что расчетная площадь подошвы фундамента F=Lb должна быть равна площади подошвы прерывистого фундамента F пр=[L-с(n— 1)]b гр. Однако из рис. 29.8 видно, что вследствие разрывов между блоками сплошное давление на грунт передается не непосредственно по подошве, а по плоскости, лежащей на некотором расстоянии от подошвы фундамента. Следовательно, осадку каждого блока следует рассчитывать как осадку отдельного фундамента с учетом влияния соседних блоков и образования арочного эффекта. Такой расчет затруднителен. Поэтому на практике разрешается рассчитывать прерывистый фундамент в целом, принимая среднее давление на грунт несколько большим, чем нормативное.

Рис. 29.8. Фундамент под стену

б — прерывистый из блоков

5. СБОРНЫЕ ФУНДАМЕНТЫ ПОД ОТДЕЛЬНЫЕ ОПОРЫ

Основной тип сборного фундамента под колонну — башмак стаканного типа. Его изготовляют из железобетона, а конструкция башмака должна полностью соответствовать рекомендациям и требованиям, изложенным в разделе железобетонных конструкций. Конструктивное оформление фундаментного блока- башмака стаканного типа показано на рис. 29.9 и 29.10.

III.СВАИ И СВАЙНЫЕ ФУНДАМЕНТЫ

1. НАЗНАЧЕНИЕ И РАБОТА СВАЙ

Сваи представляют собой круглые или многогранные стержни (деревянные, бетонные, железобетонные или металлические), погруженные в грунт. По длине они могут быть постоянного сечения (цилиндрические и призматические) и переменного (конические и пирамидальные) .

Группу свай, образующую свайный фундамент, поверху связывают жесткой конструкцией в виде балки или плиты, обеспечивающей передачу давления от сооружения на все сваи и препятствующей горизонтальному перемещению верхней части последней. Конструкции, связывающие головы свай, называют ростверками и выполняют в зависимости от материала свай и постоянного уровня грунтовых вод из дерева, бетона или железобетона. Различают ростверки высокие и низкие (рис. 30.1). Высокими называют ростверки, нижняя плоскость которых лежит выше поверхности грунта. Такие ростверки устраивают, когда поверхность грунта покрыта водой, например при строительстве набережных, мостовых опор и т. д. Однако возможно устройство высоких ростверков и при строительстве гражданских зданий, например при устройстве технического подполья.

Низкими называют ростверки с заглубленной в грунт нижней плоскостью. В промышленном и гражданском строительстве обычно применяют низкие ростверки. Отметка заглубления низкого ростверка в грунт зависит от наличия подвалов и проходящих в нем подземных коммуникаций, возможности пучения грунтов, глубины заложения соседних фундаментов и ряда других причин. Свая своим нижним концом может опираться на практически несжимаемые грунты: скальные, плотные крупнообломочные, плотные песчаные, плотные малосжимаемые глинистые в твердом состоянии (при показателе консистенции IL

© 2000 — 2021, ООО «Олбест» Все права защищены

Источник

Оцените статью