5.5.3. Определение основных размеров фундаментов (ч. 1)
Основные размеры фундаментов мелкого заложения (глубина и размеры подошвы) в большинстве случаев определяются исходя из расчета оснований по деформациям, который включает:
- – подсчет нагрузок на фундамент;
- – оценку инженерно-геологических и гидрогеологических условий площадки строительства; определение нормативных и расчетных значений характеристик грунтов;
- – выбор глубины заложения фундамента;
- – назначение предварительных размеров подошвы по конструктивным соображениям или исходя из условия, чтобы среднее давление на основание равнялось расчетному сопротивлению грунта, приведенному в табл. 5.13;
- – вычисление расчетного сопротивления грунта основания R по формуле (5.29), изменение в случае необходимости размеров фундамента с тем, чтобы обеспечивалось условие p ≤ R ; в случае внецентренной нагрузки на фундамент, кроме того, проверку краевых давлений;
- – при наличии слабого подстилающего слоя проверку соблюдения условия (5.35);
- – вычисление осадок основания и проверку соблюдения неравенства (5.28); при необходимости корректировку размеров фундаментов.
В случаях, оговоренных в п. 5.1, выполняется расчет основания по несущей способности. После этого производятся расчет и конструирование самого фундамента.
А. ЦЕНТРАЛЬНО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ
Определение размеров подошвы фундамента по заданному значению расчетного сопротивления грунта основания. Обычно вертикальная нагрузка на фундамент N0 задается на уровне его обреза, который чаще всего практически совпадает с отметкой планировки. Тогда суммарное давление на основание на уровне подошвы фундамента будет:
где — среднее значение удельного веса фундамента и грунта на его обрезах, принимаемое обычно равным 20 кН/м 3 ; d и А — глубина заложения и площадь подошвы фундамента.
Если принять p = R , получим следующую формулу для определения необходимой площади подошвы фундамента:
Задавшись соотношением сторон подошвы фундамента η = l/b , получим:
Зная размеры фундамента, вычисляют его объем и вес Nf , а также вес грунта на его обрезах Ng и проверяют давление по подошве:
Определение размеров подошвы фундамента при неизвестном значении расчетного сопротивления грунта основания. Как видно из формулы (5.29), расчетное сопротивление грунта основания зависит от неизвестных при проектировании размеров фундамента (глубины его заложения d и размеров в плане b×l ), поэтому обычно эти размеры определяются методом последовательных приближений. В качестве первого приближения принимают размеры фундамента по конструктивным соображениям или из условия (5.41), т.е. принимая R = R0 .
Однако необходимые размеры подошвы фундамента можно определить за один прием. Из формулы (5.41)
ηb 2 (R – d) – N0 = 0 ,
а с учетом формулы (5.29) при b kz = 1)
Уравнение (5.43) приводится к виду:
для ленточного фундамента
для прямоугольного фундамента
;
;
Решение квадратного уравнения (5.44) производится обычным способом, а уравнения (5.45) — методом последовательного приближения или по стандартной программе.
После вычисления значения b с учетом модульности и унификации конструкций принимают размеры фундамента и проверяют давление по его подошве по формуле (5.42).
Пример 5.7. Определить ширину ленточного фундамента здания жесткой конструктивной схемы без подвала ( db = 0). Отношение L/H = 1,5. Глубина заложения фундамента d = 2 м. Нагрузка на фундамент на уровне планировки n0 = 900 кН/м. Грунт — глина с характеристиками, полученными при непосредственных испытаниях: φII = 18°, cII = 40 кПа, γII = γ´II = 18 кН/м 3 , IL = 0,45.
Решение. по табл. 5.10 имеем: γс1 = 1,2 и γс2 = 1,1; по табл. 5.11 при φII = 18°; Мγ = 0,43; Мq = 2,73; Мc = 5,31. Поскольку характеристики грунта приняты по испытаниям, k = 1.
Для определения ширины фундамента b предварительно вычисляем:
;
a1 = 1,2·1,1(2,73 · 2 · 18 + 5,31 · 40) – 20 · 2 = 370,1.
Подставляя эти значения в формулу (5.44), получаем 10,22 b 2 + 370,1 b – 900 = 0, откуда
м.
Принимаем b = 2,4 м.
Пример 5.8. Определить размеры столбчатого фундамента здания гибкой конструктивной схемы ( γс2 = 1). Соотношение сторон фундамента η = l/b = 1,5, нагрузка на него составляет: N0 = 4 МН = 4000 кН. Грунтовые условия и глубина заложения те же, что и в предыдущем примере.
a0η = 1,2 · 1 · 0,43 · 18 · 1,5 = 13,93;
a1η = [1,2 · 1(2,73 · 2 · 18 + 5,31 · 40) – 20 · 2] 1,5 = 499,22.
Затем, подставляя в уравнение (5.45) полученные величины (13,93 b 3 + 499,22 b 2 – 4000 = 0) и решая его по стандартной программе, находим b = 2,46 м, тогда l = 1,5 b = 3,7 м.
Принимаем фундамент с размерами подошвы 2,5×3,7 м.
Определение размеров подошвы фундамента при наличии слабого подстилающего слоя. При наличии в пределах сжимаемой толщи основания (на глубине z от подошвы фундамента) слоя грунта с худшими прочностными свойствами, чем у лежащего выше грунта, размеры фундамента необходимо назначать такими, чтобы обеспечивалось условие (5.35). Это условие сводится к определению суммарного вертикального напряжения от внешней нагрузки и от собственного веса лежащих выше слоев грунта ( σz = σzp + σzg ) и сравнению этого напряжения с расчетным сопротивлением слабого подстилающего грунта R применительно к условному фундаменту, подошва которого расположена на кровле слабого грунта.
Пример 5.9. Определить размеры столбчатого фундамента при следующих инженерно-геологических условиях (см. рис. 5.24). На площадке от поверхности до глубины 3,8 м залегают песни крупные средней плотности маловлажные, подстилаемые суглинками. Характеристики грунтов по данным испытаний: для песка φII = 38°, сII = 0, γII = γ´II = 18 кН/м 3 , E = 40 МПа; для суглинков φII = 19°, сII = 11 кПа, γII = 17 кН/м 3 , E = 17 МПа. Здание — с гибкой конструктивной схемой без подвала ( db = 0). Вертикальная нагрузка на фундамент на уровне поверхности грунта N0 = 4,7 MH. Глубина заложения фундамента d = 2 м. Предварительные размеры подошвы фундамента примяты исходя из R = 300 кПа (табл. 5.13) равными 3×3 м.
Решение. по формуле (5.29) с учетом табл. 5.11 и 5.12 получаем;
кПа.
Для определения дополнительного вертикального напряжения от внешней нагрузки на кровле слабого грунта предварительно находим:
среднее давление под подошвой
p = N0/b 2 + d = 4,7 · 10 3 /3 2 + 20 · 2 = 520 + 40 = 560 кПа;
дополнительное давление на уровне подошвы
По табл. 5.4 при ζ = 2z/b = 2 · 1,8/3 = 1,2 коэффициент α = 0,606. Тогда дополнительное вертикальное напряжение па кровле слабого слоя от нагрузки на фундамент будет:
Ширина условного фундамента составит:
м.
Для условного фундамента на глубине z = 1,8 м при γc1 = γc2 = k = 1 расчетное сопротивление суглинков по формуле (5.29) будет:
Rz = 0,47 · 4 · 17 + 2,88 · 3,8 · 18 + 5,48 · 11 = 30 + 196 + 60 = 286 кПа.
Вертикальное нормальное напряжение от собственного веса грунта на глубине z = 3,8 м
Проверяем условие (5.35):
315 + 62 = 377 > Rz = 286 кПа,
т.е. условие (5.35) не удовлетворяется и требуется увеличить размеры фундамента. Расчет показал, что в данном случае необходимо принять b = 3,9 м.
Сорочан Е.А. Основания, фундаменты и подземные сооружения
Источник
Подбор размеров подошвы и ступеней фундамента
Расчетное сопротивление грунта по II группе предельных состояний
Марка бетона В15; марка стали А240.
— Нормативная нагрузка на фундамент
Nп =
N=1164,63 — из расчета колонны; γf,red = 1.15 – осредненный коэффициент надежности по нагрузкам.
— Требуемая площадь подошвы фундамента
;
ρ=20кН/м³; — осредненный объемный вес бетона и грунта; Н1=1,2м – глубина заложения фундамента.
.
— Размеры сторон подошвы фундамента
а = .
Принимаем а =2,4, тогда А= а²=5,76 м².
— Давление на грунт под подошвой фундамента
P=
— Определяем рабочую высоту фундамента из условия продавливания
hо=
— Высота фундамента из условия продавливания
а = aз.с. + 0,5ds = 40 + 0,5∙20 = 50 мм, aз.с=40 мм – толщина защитного слоя бетона в грунте, ds= 20 мм предварительный диаметр арматуры подошвы фундамента.
Минимальная высота фундамента по конструктивным требованиям:
— из условия заделки колонны в фундамент
t = 200мм, толщина дна стакана фундамента, δ = 50 мм – конструктивный зазор для выверки фундамента по высоте.
— из условия анкеровки арматуры колонн
Принимаем высоту фундамента Н кратно 300мм., тогда Н = 900мм.
Проверяем подошву фундамента расчетом по наклонным сечениям из условия, чтобы не требовалась установка поперечной арматуры
Задаемся: длина второй ступени а1= 1,8 м.; высота нижней ступени h1=0,3м.; рабочая высота нижней ступени; hо1= 0,3-0,05=0,25м.
где в =2,4м. ширина фундамента
121500 Н=121,5 кН
Принимаем по сортаменту: 13Ø12 Аs=1470 мм².
% =0,52%
Источник
6.1. РАСЧЕТ ЖЕЛЕЗОБЕТОННЫХ ФУНДАМЕНТОВ НА ЕСТЕСТВЕННОМ ОСНОВАНИИ ПОД КОЛОННЫ ЗДАНИЙ И СООРУЖЕНИЙ
6.1.1. Общие положения
Размеры подошвы и глубина заложения фундаментов определяются расчетом основания, приведенным в гл. 5. Расчет конструкции фундамента (плитной части и подколонника) производится по прочности и раскрытию трещин и включает: проверку на продавливание и на «обратный» момент, определение сечений арматуры и ширины раскрытия трещин, а также расчет прочности поперечного сечения подколонника.
Исходными данными для расчета являются: размеры подошвы плитной части; глубина заложения и высота фундамента; площадь сечения подколонника; сочетания расчетных и нормативных нагрузок от колонны на уровне обреза фундамента.
Расчет фундаментов по прочности и раскрытию трещин производится на основное и особое сочетания нагрузок. При расчете фундамента по прочности расчетные усилия и моменты принимаются с коэффициентом надежности по нагрузке по указаниям действующих СНиП, а при расчете по раскрытию трещин — с коэффициентом надежности по нагрузке, равным единице.
При проверке прочности плитной части фундамента на обратный момент необходимо учитывать нагрузки от складируемого на полу материала и оборудования.
При расчете фундаментов по прочности и по раскрытию трещин возникающие в них усилия от температурных и им подобных деформаций принимаются изменяющимися по вертикали от полного их значения на уровне обреза фундамента до половинного значения на уровне подошвы фундамента.
Расчетные характеристики бетона и стали приведены в гл. 4 и принимаются с учетом соответствующих коэффициентов условий работы [5, 9].
6.1.2. Расчет фундаментов на продавливание
Расчет на продавливание производится из условия, чтобы действующие усилия были восприняты бетонным сечением фундамента без установки поперечной арматуры: при монолитном сопряжении колонны с плитной частью — от верха последней (рис. 6.1, а), при монолитном сопряжении подколонника с плитной частью независимо от вида соединения колонны с подколонником (монолитные или стаканные) при расстоянии от верха плитной части до низа колонны H1 ≥ (buc – bc)/2 — от верха плитной части (рис. 6.1, б), а при меньшем H1 — от низа колонны (рис. 6.1, в).
Проверка выполнения этого условия производится в обоих направлениях [8].
При расчете фундамента на продавливание определяется минимальная высота плитной части h и назначаются число и размеры ее ступеней или проверяется несущая способность плитной части при заданной ее конфигурации. При расчете на продавливание от верха плитной части принимается, что продавливание фундамента при центральном нагружении происходит по боковым поверхностям пирамиды, стороны которой наклонены под углом 45° к горизонтали (см. рис. 6.1).
Квадратный фундамент рассчитывается на продавливание из условия
где F — расчетная продавливающая сила; k — коэффициент, принимаемый равным 1; Rbt — расчетное сопротивление бетона на растяжение; ba — среднее арифметическое значение периметров верхнего и нижнего оснований пирамиды продавливания, образующейся в пределах рабочей высоты сечения h0 , (расстояния от верха плитной части до середины арматуры).
Величины F и ba определяются по формулам:
Источник