Площадь подошвы центрально загруженного фундамента
Страница 1 из 2 | 1 | 2 | > |
Пожалуйста помогите разобраться. Площадь подошвы центрально загруженного фундамента всегда считал по одной простой формуле
A=bl=N/(R-yd),
где N — нагрузка нормативная ;
R — расчетное сопротивление грунта;
y — 20 kH/м3 ;
d — глубина заложения подошвы.
Мой ГИП считает еще более простым способом N/ах = R , отсюда ширина х = N/аR.
По его формуле глубина заложения, и удельный вес «y» не влияют на подошву. Как так?. У моего ГИПа очень трудно что либо узнать, сказал «считай как я считаю» , поэтому прошу помощи у вас. Подскажите пожалуйста.
18.09.2008, 13:25
18.09.2008, 13:58
Нижеприведенные сведения взяты из:
Основания, фундаменты и подземные сооружения / М.И.Горбунов-Посадов, В.А. Ильичев, В.И. Крутов и др.; Под общ. ред. Е.А. Сорочана и Ю.Г. Трофименкова. — М.: Стройиздат, 1985. — 480 с., ил. — (Справочник проетировщика)
Для предварительного назначения размеров подошвы фундамента см. стр.79 ф.5.40:
A=N/(R-yd),
где A — площадь подошвы;
N — нормативное значение внешней нагрузки;
R — расчетное сопротивление грунта основания;
y — среднее значение удельного веса фундамента и грунта на его обрезах, принимаемое для расчетов равным 20 кН/м3;
d — глубина заложения подошвы фундамента.
И далее. Зная размеры фундамента, вычисляют его объемный вес, а также вес грунта на его обрезах и проверяют давление по подошве см. ф. 5.42:
p=(N+N1+N2)/A
18.09.2008, 17:23
Геотехника. Теория и практика
19.09.2008, 10:58
22.09.2008, 12:57
в этой задачке есть две взаимосвязанные переменные — ширина подошвы и расчетное сопротивление грунта |
22.09.2008, 13:45
Геотехника. Теория и практика
23.09.2008, 03:48
23.09.2008, 07:07
Геотехника. Теория и практика
23.09.2008, 10:28
LISP, C# (ACAD 200[9,12,13,14])
Offtop: По бокам космического корабля «Кеннеди» размещаются два двигателя по 5 футов шириной. Конструкторы корабля хотели бы сделать эти двигатели еще шире, но не смогли. Почему? |
Дело в том, что двигатели эти доставлялись по железной дороге, которая проходит по узкому туннелю. Расстояние между рельсами стандартное: 4 фута 8.5 дюйма, поэтому конструкторы могли сделать двигатели только шириной 5 футов.
Возникает вопрос: почему расстояние между рельсами 4 фута 8.5 дюйма? Откуда взялась эта цифра?
Оказывается, что железную дорогу в Штатах делали такую же, как и в Англии, а в Англии делали железнодорожные вагоны по тому же принципу, что и трамвайные, а первые трамваи производились в Англии по образу и подобию конки. А длина оси конки составляла как раз 4 фута 8.5 дюйма! Но почему?
Потому что конки делали с тем расчетом, чтобы их оси попадали в колеи на английских дорогах, чтобы колеса меньше изнашивались, а расстояние между колеями в Англии как раз 4 фута 8.5 дюйма! Отчего так?
Да просто дороги в Великобритании стали делать римляне, подводя их под размер своих боевых колесниц, и длина оси стандартной римской колесницы равнялась. правильно, 4 футам 8.5 дюймам! Ну вот теперь мы докопались, откуда взялся этот размер, но все же почему римлянам вздумалось делать свои колесницы с осями именно такой длины? А вот почему: в такую колесницу запрягали обычно двух лошадей. А 4 фута 8.5 дюйма — это был как раз размер двух лошадиных задниц! Делать ось колесницы длиннее было неудобно, так как это нарушало бы равновесие колесницы.
Источник
Расчет подошвы фундамента
Определение размеров фундамента начинают с определения глубины заложения его подошвы. Глубина заложения подошвы для фундаментов неотапливаемых зданий и сооружений под наружные стены, а также колонн отапливаемых зданий принимается равной не менее глубины промерзания грунта. Глубина заложения внутренних стен и колонн отапливаемых зданий не зависит от глубины промерзания грунта и назначается по конструктивным требованиям.
При выборе глубины заложения подошвы фундамента следует учитывать конструктивные требования: наличие подвала, обеспечения глубины заделки колонны и арматуры колонны. Глубина заложения подошвы фундаментов должна быть больше толщины почвенного слоя и не менее 0,5 м от поверхности планировки или низа пола. Назначение высоты фундамента, размеров его ступеней и глубины заделки производится в соответствии с требованиями СП 50-101-2004. Фундаменты делятся на центрально-нагруженные и внецентренно-нагруженные (рис. 7.1 и 7.2).
Определение размеров подошвы центрально-нагруженного фундамента. Размеры подошвы фундамента определяются из условия
, (7.1)
где N – осевая сила от внешних нагрузок на верхнем обрезе фундамента (при γf=1), кН;
N1 – собственный вес фундамента и вес грунта на его уступах, кН;
А – площадь подошвы фундамента, м 2 ;
R – расчетное сопротивление грунта, кН/м 2 .
Если принять усредненный удельный вес материала фундамента и грунта на его уступах равным 22 кН/м 3 , тогда площадь фундамента будет равна :
, м 2 , (7.1)
где d1 – глубина заложения фундамента, м.
Учитывая, что расчетное сопротивление грунта зависит от размеров фундамента, предварительный подбор подошвы ведут по расчетным сопротивлениям R=R0, принятым из табл. 7.1.
По вычисленной площади подошвы фундамента А определяют размеры его сторон. Для квадратного фундамента размер стороны а=А 0,5 . Полученные размеры подошвы округляют, вычисляют принятую площадь фундамента и производят окончательную проверку давлений по подошве по формуле 7.1 при фактическом значении R.
Рисунок 7.1 – Типы фундаментов : а- центрально-нагруженные; б – внецентренно-нагруженные; 1- колонна, 2 – отдельный фундамент; 3- кирпичная стена, 4 – ленточный фундамент, 5- расчетная полоса
Рисунок 7.2 – К расчету внецентренно-нагруженного фундамента
Таблица 7.1 – Расчетные сопротивления R0 грунтов для предварительных расчетов
Наименование грунта | R0, кН/м 2 |
Пески крупные средней плотности | 500 |
Пески мелкие средней плотности маловлажные | 300 |
Пески мелкие средней плотности влажные и насыщенные водой | 200 |
Пески средней плотности пылеватые маловлажные | 250 |
Супеси (e=0,5 JL=0) | 300 |
Суглинки (e=0,7 JL=1) | 180 |
Насыпные грунты | 100-250 |
Примечание: Значения R0 относятся к фундаментам, имеющим ширину b0=1 м и глубину заложения d0=2 м
Внецентренно-сжатые фундаменты .Все внешние силы N1, Q1, M1, действующие на фундамент, приводятся к вертикальной силе N, проходящей через центр тяжести подошвы фундамента и моментам Mx и My, действующим на уровне подошвы фундамента (рис. 7.2). При этом расчеты производят на невыгодные комбинации усилий. Давление под подошвой фундамента при действии моментов в двух плоскостях определяется по формуле:
, кН/м 2 , (7.2)
где МХ и МY – моменты внешних сил относительно осей X и Y;
WX и WY – моменты сопротивлений подошвы фундамента относительно тех же осей;
А – площадь подошвы фундамента.
При действии фундамента в одной плоскости МY и WY принимают равными 0.
Проверка основания фундамента или подбор размеров подошвы производят так, чтобы среднее давление под подошвой не превышало расчетного сопротивления R, т.е.
, кН/м 2 , (7.3)
При этом наибольшее краевое давление при действии изгибающего момента вдоль каждой оси фундамента не должно превышать 1,2R и в угловой точке 1,5R.
Для большинства фундаментов минимальное краевое давление при действии изгибающего момента вдоль каждой оси должно быть Рmin≥0/
Определение площади подошвы фундамента ведут в следующей последовательности По табл. 7.1 в зависимости от наименования грунта определяют R0. Определяют размеры сторон фундамента и требуемую площадь подошвы по формуле
, м 2 . (7.4)
Обычно для прямоугольных отдельных фундаментов принимают а=(1÷1,6) b. По найденным размерам уточняют значение R и по формуле 7.1 проверяют давление под подошвой фундамента. В случае, если давление фундамента превышает указанные величины, размеры подошвы фундамента корректируют и производят проверку давления заново.
Расчет ленточных фундаментов под кирпичные стены аналогичен расчету отдельных фундаментов, для чего по длине фундамента условно вырезают полосу, равную 1 м, и для нее производят определение размеров по формулам, указанным выше.
Пример:
Колонна передает на фундамент в уровне его обреза (верхней плоскости) осевую нагрузку с учетом коэффициента надежности по назначению N=2000кН. Глубина промерзания грунта для данного региона dp=1,8 м (табл. 7.4). Грунты основания сложены из пылеватых маловлажных песков, имеющих следующие расчетные характеристики: удельный вес γII=20кН/м 3 , удельное сцепление с=6кПа, угол внутреннего трения φII=34°. Требуется определить размеры подошвы фундамента.
Принимаем глубину заложения фундамента d1=dp=1,8 м. По табл. 7.1 находим предварительно расчетное сопротивление грунта R=R0=250 кН/м 2 . Тогда требуемая площадь подошвы фундамента по формуле 7.1:
, м 2
Площадь подошвы квадратного в плане фундамента с размерами сторон a=b=A 0,5 =9,5 0,5 =3,08≈3,1 м. Для заданного грунта γII=20кН/м 3 , γc1=1,25 и γc2=1,0 (табл. 7.2),
,кН/ м 2 , (7.5)
где γc1 и γc2 — коэффициенты условий работы, принимаемые по табл. 7.2;
k — коэффициент, принимаемый: k = 1, если прочностные характеристики грунта (с и φ) определены непосредственными испытаниями, и k= 1,1, если указанные характеристики приняты по таблицам;
Мγ, Мq и Мc — коэффициенты, принимаемые по табл. 7.3;
kz — коэффициент, принимаемый: kz = 1 при b 3 ; γ´II — то же, залегающих выше подошвы;
сII — расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, кПа;
,кН/ м 2 .
Так как R=514 кН/м 2 в значительной мере отличается от принятых в первом расчете R=250 кН/м 2 , то производим повторный расчет.
, м 2 .
Принимаем a=b=2,2 м, А=2,2∙2,2=4,84 м 2 т определяем R.
,кН/ м 2 .
Проверяем среднее давление на грунт под подошвой фундамента
,кН/м 2 .
Размеры подошвы фундамента достаточны.
Таблица 7.2 – Значения коэффициентов γс1 и γс2
γс2 для сооружений с жесткой конструктивной схемой при отношении длины сооружения или его отсека к его высоте L/H
1. Жесткую конструктивную схему имеют сооружения, конструкции которых приспособлены к восприятию усилий от деформаций оснований путем применения специальных мероприятий.
2. Для сооружений с гибкой конструктивной схемой значения коэффициента γс2 принимается равным единице.
3. При промежуточных значениях L/H коэффициент γс2 определяется интерполяцией.
Таблица 7.3 – Таблица коэффициентов Мγ, Мq и Мc
φII, град | My | Mq | Mc | φII, град | My | Mq | Mc |
0 | 0 | 0 | 3,14 | 23 | 0,69 | 3,65 | 6,24 |
1 | 0,01 | 0,06 | 3,23 | 24 | 0,72 | 3,87 | 6,45 |
2 | 0,03 | 1,12 | 3,32 | 25 | 0,78 | 4,11 | 6,67 |
3 | 0,04 | 1,18 | 3,41 | 26 | 0,84 | 4,37 | 6,90 |
4 | 0,06 | 1,25 | 3,51 | 27 | 0,91 | 4,64 | 7,14 |
5 | 0,08 | 1,32 | 3,61 | 28 | 0,98 | 4,93 | 7,40 |
6 | 0,10 | 1,39 | 3,71 | 29 | 1,06 | 5,25 | 7,67 |
7 | 0,12 | 1,47 | 3,82 | 30 | 1,15 | 6,59 | 7,95 |
8 | 0,14 | 1,55 | 3,93 | 31 | 1,24 | 5,95 | 8,24 |
9 | 0,16 | 1,64 | 4,05 | 32 | 1,34 | 6,34 | 8,55 |
10 | 0,18 | 1,73 | 4,17 | 33 | 1,44 | 6,76 | 8,88 |
11 | 0,21 | 1,83 | 4,29 | 34 | 1,55 | 7,22 | 9,22 |
12 | 0,23 | 1,94 | 4,42 | 35 | 1,68 | 7,71 | 9,58 |
13 | 0,26 | 2,05 | 4,55 | 36 | 1,81 | 8,24 | 9,97 |
14 | 0,29 | 2,17 | 4,69 | 37 | 1,95 | 8,81 | 10,37 |
15 | 0,32 | 2,30 | 4,84 | 38 | 2,11 | 9,44 | 10,80 |
16 | 0,36 | 2,43 | 4,99 | 39 | 2,28 | 10,11 | 11,25 |
17 | 0,39 | 2,57 | 5,15 | 40 | 2,46 | 10,85 | 11,73 |
18 | 0,43 | 2,73 | 5,31 | 41 | 2,66 | 11,64 | 12,24 |
19 | 0,47 | 2,89 | 5,48 | 42 | 2,88 | 12,51 | 12,79 |
20 | 0,51 | 3,06 | 5,66 | 43 | 3,12 | 13,46 | 13,37 |
21 | 0,56 | 3,24 | 5,84 | 44 | 3,38 | 14,50 | 13,98 |
22 | 0,61 | 3,44 | 6,04 | 45 | 3,66 | 15,64 | 14,64 |
Таблица 7.4 – Нормативная глубина промерзания грунтов
Источник