Как рассчитать крен фундамента

Крен фундамента

Основные положения

Режим предназначен для определения крена прямоугольного в плане фундамента от действующих на него нагрузок от стен и колонн, нагрузок на прилегающие площади и давления соседних фундаментов в соответствии с требованиями СНиП 2.02.01-83* и рекомендаций «Пособия по проектированию оснований зданий и сооружений (к СНиП 2.02.01-83)» НИИОСП им. Н.М. Герсеванова Госстроя СССР (1986г., п.2.233-2.245, 2.212-2.218), а также СП 50-101-2004, СП 22.13330, ДБН В.2.1-10-2009.

Крен от нагрузок на фундамент определяется как с учетом, так и без учета отпора грунта по боковой поверхности подколонника (согласно 17.2.241 «Пособия. » рекомендуется учитывать отпор грунта по боковой поверхности подколонника для фундаментов, высота которых в грунте превышает 5 м; в СП 50-101-2004 и ДБН В.2.1-10-2009 вопросы отпора грунта по боковой поверхности не рассматриваются). Кроме того, определяются:

  • глубина сжимаемой толщи;
  • изгибающие моменты в уровне подошвы фундамента;
  • краевые давления под подошвой фундамента (максимальные и минимальные);
  • угловые давления под подошвой фундамента (максимальное и минимальное);
  • относительная площадь отрыва при действии My, Qy или Mz, Qz (только в режиме расчета по СП 22.13330 без учета бокового отпора грунта);
  • коэффициент неравномерного сжатия грунта под подошвой;
  • глубина центра поворота фундамента;
  • ординаты эпюры отпора грунта по боковой поверхности подколонника в одиннадцати сечениях.

Все результаты выдаются для двух взаимно перпендикулярных плоскостей.

При расчете всегда используется рекомендуемое нормами среднее взвешенное значение удельных весов тела фундамента, грунта и пола, расположенных над подошвой фундамента, равное 2 T/м 3 .

Читайте также:  Как делать бетонную подушку под фундамент

Режим может быть использован для столбчатых и ленточных фундаментов промышленных и гражданских зданий, а также различных сооружений. Жесткость надфундаментных конструкций не учитывается. Размеры подошвы фундамента не ограничиваются. Основание может состоять из неоднородных по глубине нескальных слоев грунта.

Подготовка данных

Исходные данные для расчета задаются в многостраничном диалоговом окне Крен фундамента , которое включает следующие страницы:

Общие данные — задаются характеристики рассматриваемого фундамента и усилия, действующие в уровне верха рассматриваемого фундамента, а также характеристики соседних фундаментов и значения нормальных сил, действующих на соседние фундаменты в уровне их обреза. Кроме того, на этой странице назначаются нагрузки на прилегающие площади, которые описываются в виде прямоугольных областей. Для каждой области следует задать координаты привязки центра, размеры сторон прямоугольника и значение распределенной нагрузки. Вес грунта и собственно фундаментов учитывается автоматически. Для определения крена от влияния соседних фундаментов и нагрузок на прилегающие площади необходимо задать хотя бы одну нагрузку. Введенная информация может быть проконтролирована кнопками — Предварительный просмотр .

Ступени — задаются геометрические характеристики фундамента, а также глубина его заложения относительно уровня планировки (или пола) и природного рельефа. Геометрические характеристики включают данные о высоте фундамента, количестве, высоте и размерах ступеней (для ленточных фундаментов, количество ступеней принимается равным единице и задается только высота первой ступени). В тех случаях, когда не учитывается боковой отпор грунта, данные о ступенях не требуются.

Грунты — задаются расчетные характеристики грунтов (для расчета по деформациям) под подошвой фундамента, необходимые для расчета по деформациям, а также характеристики грунта выше подошвы. Отметим, что для водонасыщенных грунтов следует задать удельный вес частиц грунта, в противном случае — удельный вес грунта. Согласно СП 22.13330 следует учитывать поровое давление грунтовых вод. Если слой грунта находится в водонасыщенном состоянии и удовлетворяет требованиям п. 5.6.40 СП 22.13330.2011, пользователь может взвести маркер в столбце «Учитывать поровое давление». При этом при расчете вертикального эффективного напряжения от собственного веса грунта будет учтено поровое давление на границе слоя. При расчетах по СП 22.13330.2016 поровое давление учитывается всегда.

Величина порового давления вычисляется на основании рекомендаций п. Б.1.2 СП 23.13330.2011.

При расчетах по СП 22.13330.2011 использовать маркер «Учитывать поровое давление» не рекомендуется, поскольку формулировки норм требуют использовать удельный вес водонасыщенных грунтов с учетом взвешивающего действия воды. Учет еще и порового давления приводит к двойному учету взвешивающего действия воды. Эти ошибочные формулировки были исправлены только в СП 22.13330.2016.

Единственным нормативным документом, в котором оговорен расчет крена фундамента с учетом бокового отпора грунта, является Пособие к СНиП 2.02.01-83. Поэтому при любом выборе норм проектирования расчет в этом случае выполняется по методике, приведенной в данном Пособии.

Введенная на указанных страницах информация может быть проконтролирована кнопками Предварительный просмотр . При анализе параметров фундаментов в окне контроля данных для каждого фундамента (включая рассматриваемый) выводятся размеры подошвы А и В, а также значение нормальной силы. При контроле нагрузок на прилегающие площади их поля отображаются на фоне фундаментов и для каждой нагрузки показаны размеры ограничивающего ее прямоугольника и значение нагрузки.

Результаты расчета

Расчет выполняется после нажатия кнопки Вычислить . Результаты расчета в установленных в настройках единицах выдаются в табличном виде на странице Результаты и включают следующие величины:

  • крен фундамента в направлении осей X и Y от нагрузок на пол и влияния соседних фундаментов;
  • крен фундамента в направлении осей X и Y от нагрузок на рассматриваемый фундамент без учета отпора грунта;
  • суммарный крен фундамента в направлении осей X и Y (от полезных нагрузок на пол, влияния соседних фундаментов и от нагрузок на рассматриваемый фундамент) без учета отпора грунта;
  • крен фундамента в направлении осей X и Y с учетом отпора грунта от нагрузок на рассматриваемый фундамент;
  • суммарный крен фундамента в направлении осей X и Y;
  • глубина сжимаемой толщи;
  • изгибающие моменты в уровне подошвы фундамента в направлении осей X и Y;
  • максимальные краевые давления под подошвой фундамента в направлении осей X и Y;
  • минимальные краевые давления под подошвой фундамента в направлении осей X и Y;
  • максимальное и минимальное угловые давления под подошвой фундамента;
  • коэффициент неравномерного сжатия грунта под подошвой в вертикальном направлении в направлении осей X и Y (формула (84) «Пособия. »);
  • глубина центра поворота фундамента в направлении осей X и Y;
  • относительная площадь отрыва фундамента (для случая одноосного изгиба при расчетах по СП 22.13330).

Кроме того, если расчет выполнялся с учетом бокового отпора грунта, на странице Результаты отображаются графики изменения отпора грунта по боковой поверхности по глубине в направлении осей X и Y. Если отпор грунта по боковой поверхности превышает расчетное сопротивление грунта, то выдается соответствующее сообщение с указанием оси.

По результатам расчета формируется отчет (кнопка Отчет ), который включает таблицы с исходными данными и результатами расчета. Если расчет выполнялся с учетом бокового отпора грунта, то отчет включает графики изменения отпора грунта по боковой поверхности подколонника, а также таблицу с ординатами эпюр отпора грунта по боковой поверхности в направлении осей X и Y и расчетным сопротивлением грунта сверху вниз в 11-и сечениях. Отчет загружается автоматически в приложение, ассоциированное с форматом, заданным в настройках программы.

Источник

5.5.4. Расчет деформаций основания (ч. 2)

Б. КРЕН ФУНДАМЕНТОВ

При действии внецентренной нагрузки крен фундамента определяется по формуле

где Е и v — модуль деформации и коэффициент Пуассона грунта основания (при неоднородной основании значения E и v принимаются средними в пределах сжимаемой толщи); ke — коэффициент, принимаемый по табл. 5.23; N — вертикальная составляющая равнодействующей всех нагрузок на фундамент на уровне его подошвы; е — эксцентриситет; а — диаметр круглого или сторона прямоугольного фундамента, в направлении которой действует момент, для фундаментов с подошвой в форме правильного прямоугольника (здесь А — площадь многоугольника); km — коэффициент, учитываемый при расчете крена фундаментов по схеме линейно-деформируемого слоя при a ≥ 10 м и E ≥ 10 МПа и принимаемый по табл. 5.18.

Коэффициент Пуассона v принимается по табл. 1.15.

ТАБЛИЦА 5.23. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ke

Форма фундамента и направление действия момента η ke при ζ´ = 2H/b
0,5 1 1,5 2 3 4 5
Прямоугольная с моментом вдоль большей стороны

1
1,2
1,5
2
3
5
10 0,28
0,23
0,31
0,32
0,33
0,34
0,35 0,41
0,44
0,48
0,52
0,55
0,60
0,63 0,46
0,51
0,57
0,64
0,73
0,80
0,85 0,48
0,54
0,62
0,72
0,83
0,94
1,04 0,50
0,57
0,66
0,78
0,95
1,12
1,31 0,50
0,57
0,68
0,81
1,01
1,24
1,45 0,50
0,57
0,68
0,82
1,04
1,31
1,56 0,50
0,57
0,68
0,82
1,17
1,42
2,00 То же, вдоль меньшей стороны

1
1,2
1,5
2
3
5
10 0,28
0,24
0,19
0,15
0,10
0,06
0,03 0,41
0,35
0,28
0,22
0,15
0,09
0,05 0,46
0,39
0,32
0,25
0,17
0,10
0,05 0,48
0,41
0,34
0,27
0,18
0,11
0,06 0,50
0,42
0,35
0,28
0,19
0,12
0,06 0,50
0,43
0,36
0,28
0,20
0,12
0,06 0,50
0,43
0,36
0,28
0,20
0,12
0,06 0,50
0,43
0,36
0,28
0,20
0,12
0,07 Круглая

– 0,43 0,63 0,71 0,74 0,75 0,75 0,75 0,75

Примечание. При использовании расчетной схемы основания в виде линейно-деформируемого полупространства коэффициент ke принимается по графе, соответствующей ζ´ = ∞

Средние (в пределах сжимаемой толщи Нс или толщины слоя Н ) значения модуля деформации и коэффициента Пуассона грунтов основания E и v определяются по формулам;

где Ai — площадь эпюры вертикальных напряжений по оси фундамента от единичного давления под подошвой в пределах i -го слоя грунта; для схемы полупространства допускается принимать Аi = σzp,ihi [(см. формулу (5.60)], для схемы слоя Ai = ki – ki–1 , [(см. формулу (5.61)]; Ei, vi, hi — модуль деформации, коэффициент Пуассона и толщина i -го слоя грунта; n — число слоев, отличающихся значениями E и v .

Крен фундаментов, вызванный влиянием соседних фундаментов и других нагрузок (например, нагрузок на полы), а также неоднородностью грунтов основания, определяется по формуле

где s1 и s2 — осадки середин противоположных сторон фундамента; L — расстояние между рассматриваемыми точками.

При определении крена сооружений с высоко расположенным центром тяжести необходимо учитывать увеличение эксцентриситета вертикальной составляющей нагрузки из-за наклона этих сооружений. Для высоких сооружений конечной жесткости, кроме того, рекомендуется учитывать увеличение указанного эксцентриситета за счет податливости надфундаментной конструкции.

Крен высоких жестких сооружений на неоднородном основании определяется по формуле

где i — крен низкого сооружения (т.е. такого, равнодействующую всех нагрузок на которое можно считать приложенной на уровне его подошвы), определяемый по формуле (5.66); i‘ = i/M — то же, от единичного момента; N — вертикальная составляющая всех нагрузок на основание; h* — высота от подошвы фундамента до точки приложения равнодействующей.

Пример 5.14. Требуется рассчитать осадку и крен фундаментной плиты силосного корпуса, состоящего из четырех сблокированных железобетонных банок. Инженерно-геологический разрез участка и план фундаментной плиты показаны на рис. 5.28, физико-механические характеристики грунтов, полученные в результате изысканий, приведены в табл. 5.24.

ТАБЛИЦА 5.24. К ПРИМЕРУ 5.14

Номер слоя Грунт Толщина слоя, м γII , кН/м 3 e Sr IL cII , кПа φII º E , МПа v
1
2
3
4
Песок мелкий
Суглинок мягкопластичный
Суглинок моренный
Песок пылеватый
3,5—4,5
1,0—3,5
8,5—10
≥2
18,7
19,6
20,7
19,9
0,70
0,70
0,55
0,56
0,75
0,89
0,90
0,80

0,60
0,40
2
21
30
6
30
18
22
34
22
15
40
28
0,3
0,35
0,35
0,3

Расчетные нагрузки на основание (для расчета его по деформациям): постоянная от собственного веса всего сооружения, включая фундаментную плиту, G = 44,2 MH, временная от загрузки одной силосной банки Nv1 = 27 МН, момент от ветровой нагрузки Mw = 46 МН·м. Толщина фундаментной плиты 1,2 м, глубина ее заложения d1 = d = 2,5 м, размеры в плане 26×26 м, толщина слоя грунта обратной засыпки (сверху плиты) dbf = 1,3 м.

Решение. Находим среднее давление на основание при полной загрузке силоса с учетом веса грунта обратной засыпки

p = (G + 4Nv1)/A + γIIdbf = (44 200 + 4 · 2700)/26 2 + 18,7 · 1,3 = 225 + 24 = 249 кПа ≈ 250 кПа.

Для определения расчетного сопротивления грунта основания предварительно вычисляем толщину зоны, в пределах которой необходимо производить осреднение прочностных характеристик (см. п. 5.5.2):

что несколько больше средней суммарной толщины слоев 1 и 2 (6,25 м), но меньше суммарной толщины этих слоев под западным краем плиты (7 м). Поэтому для осреднения характеристик принимаем толщину слоя 1 — h1 = 4 м и толщину слоя 2 — h2 = 2,6 м. Находим:

;

кПа;

кН/м 3 .

При = 25° имеем: Mγ = 0,78, Mq = 4,11, Mc = 6,67; для слоя 1 — γс1 = γс2 = 1,3, для слоя 2 — γс1 = 1,1 и γс2 = 1,0. Осредняем эти коэффициенты аналогично тому, как это сделано в отношении φ и с :

;

.

Вычисляем коэффициент kz :

Поскольку подвал в данном сооружении отсутствует ( db = 0), формула (5.29) для определения расчетного сопротивления грунта основания принимает вид

.

Вычисление по этой формуле дает:

=1,44 (196 + 192 + 60) = 1,44 · 448 ≈ 645 кПа,

т.е. R намного больше р = 250 кПа.

Давление под краем фундаментной плиты при загружении двух силосных банок

pe = γ´IIdbf + (G + 2Nv1)/A + 2Nv1e/W + Mw/W =
= 24 + 145 + 111 + 16 ≈ 300 кПа R ; 300 кПа z = 4 м от подошвы фундамента.

При η = 1 и ζ = 2 · 4/26 = 0,31 находим: α = 0,97. Вертикальные напряжения в грунте на глубине z = 4 м составляют:

от внешней нагрузки

от собственного веса грунта

Суммарное вертикальное напряжение будет:

По формуле (5.38) определяем ширину условного фундамента bz на кровле слоя 2:

м.

R = (0,43 · 0,51 · 26,4 · 19,6 + 2,73 · 6,5 · 18,7 + 5,31 · 21) = 1,1(113 + 332 + 112) = 1,1 · 557 = 613 кПа > 364 кПа.

Поскольку ширина фундаментной плиты b > 10 м и основание сложено грунтами с модулем деформации E > 10 МПа, для расчета деформаций основания используем расчетную схему линейно-деформируемого слоя.

Определим толщину линейно-деформируемого слоя Н . При давлении р = 250 кПа коэффициент kp = 0,95. Учитывая, что основание неоднородно, получим:

Суммарная толщина слоев пылевато-глинистых грунтов в пределах толщи, равной Hcl , составляет hcl = 12,3 – 4 = 8,3 м. Тогда

H = 8,2 + 8,3/3 = 8,2 + 2,8 = 11 м.

Для определения средней осадки плиты предварительно находим коэффициенты kc, km и ki .

При ζ´ = 2 · 11/26 = 0,85 коэффициент kc = 1,4; при b = 26 м и E > 10 МПа коэффициент km = 1,5.

Коэффициенты ki определяем при η = l/b = 1 выполняя интерполяции в зависимости от значений ζi = 2zi/b . Результаты сводим в табл. 5.25, в которой значения zi и соответствующие им значения ζi и ki относятся к вертикалям, проходящим через центр (точка С ) и середины западной и восточной сторон (точки А и В ) плиты (см. рис. 5.28, б).

ТАБЛИЦА 5.25. К ПРИМЕРУ 5.14

Номер слоя Точка zi , м ζi ki
1 А
В
С
3,5
4,5
4,0
0,27
0,35
0,31
0,068
0,088
0,078
2 А
В
С
7,0
5,5
6,25
0,54
0,42
0,48
0,135
0,105
0,120
3 А
В
С
11
11
11
0,85
0,85
0,85
0,213
0,213
0,213

Средняя осадка плиты по формуле (5.81) при давлении р = 250 кПа = 0,25 МПа:

= 6,07 · 0,00867 = 0,053 м = 5,3 см,

что существенно меньше предельного значения средней осадки, равной = 40 см.

Для определения крена плиты необходимо рассматривать силосный корпус в целом как сооружение с высоко расположенным центром тяжести и учитывать увеличение эксцентриситета вертикальной нагрузки из-за наклона сооружения.

Предварительно вычисляем средние (в пределах слоя толщиной H = 11 м) значения модуля деформации и коэффициента Пуассона грунта основания.

Принимая во внимание, что , а значение уже вычислено при определении средней осадки (эта сумма равна 0,00867 МПа -1 ), по формулам (5.67) и (5.68) получаем:

МПа;

.

Вычисляем крен фундамента (без учета увеличения эксцентриситета при наклоне сооружения) от внецентренной вертикальной нагрузки (заполнения двух силосных банок) и ветровой нагрузки по табл. 5.23 при ζ´ = 0,85 и η = 1 находим ke = 0,37. Тогда по формуле (5.66)

(здесь попутно вычислено значение i1 = 6,1·10 –6 , которое потребуется в дальнейших расчетах).

Крен фундамента, вызванный неоднородностью основания, определяем как отношение разности осадок противоположных сторон фундамента к его ширине.

Вычисляем средние значения модулей деформации грунта для вертикалей, проходящих через точки А и В фундаментной плиты, пользуясь полученными ранее значениями ki (см. табл. 5.25):

МПа, МПа.

Поскольку силосный корпус — сооружение жесткое, осадки его краев определяем по формуле

.

Тогда осадки в точках А и В будут:

м = 5,8 см;

м = 4,8 см.

Крен фундамента, вызванный неоднородностью основания, находим из выражения (5.69):

.

Расстояние HR от подошвы фундамента до точки приложения равнодействующей вертикальных нагрузок, определенное как отношение статического момента этих нагрузок относительно подошвы фундамента к их сумме, равно 22,4 м.

Суммарная вертикальная нагрузка на основание при заполнении двух силосных банок

Крен силосного корпуса с учетом внецентренного его загружения, неоднородности основания и изменения эксцентриситета нагрузки при наклоне сооружения по формуле (5.70)

,

что меньше предельного значения крена для рассматриваемого сооружения.

Крен фундамента, упруго защемленного в грунте (имеющего относительное заглубление λ = d/l > 1), рекомендуется определять с использованием расчетной схемы основания (рис. 5.29), характеризуемой коэффициентами неравномерного сжатия в вертикальном направлении под подошвой фундамента ci неравномерного сжатия в горизонтальном направлении cx и сдвига в плоскости подошвы сτ .

Коэффициент ci , МПа/м 3 , определяется по формуле

где М — момент, действующий на верхний обрез фундамента, МН·м; i — крен фундамента без учета его заглубления, определяемый по формуле (5.66); I — момент инерции подошвы фундамента, м 4 ; kλ — коэффициент, принимаемый равным kλ = 1 – 0,1 λ при λ ≤ 2 и kλ = 0,8 при λ > 2 (здесь λ = d/l — относительное заглубление фундамента); для фундаментов промзданий, оборудованных мостовыми и (или) подвесными кранами, принимается kλ = 1, а при расчете крена фундаментов опор открытых крановых эстакад: для песков и супесей kλ = 1,5, суглинков kλ = 1,2, глин kλ = 1,1.

Коэффициент cx принимается линейно возрастающим с глубиной: cx = 0 при z = 0 и сx = βci ; при z = d (см. рис. 5.29), т.е.

где β — коэффициент, зависящий от степени уплотнения грунта обратной засыпки, т.е. отношения ρ´dd (плотности в сухом состоянии грунта обратной засыпки к соответствующей характеристике грунта природного сложения):

ρ´dd 1,00 0,98 0,96 0,94 0,92 0,90
β 1,00 0,88 0,76 0,94 0,50 0,40

Крен фундамента id с учетом его защемления в грунте определяется по формуле

а глубина, на которой расположен центр его поворота, — по уравнению

где M1 = M + Qh0 — см. рис. 5.29; d, А, I — глубина наложения, площадь и момент инерции подошвы фундамента;

Краевые давления под подошвой заглубленного фундамента определяются по формуле (5.58), в которую следует подставлять значение id , вычисленное по формуле (5.73).

Реактивное сопротивление грунта σx(z) по передней и задней граням фундамента определяется по формуле

Напряжения σx(z) не должны превышать предельных значений σxu(z) , вычисляемых по зависимости

где γc — коэффициент условий работы, принимаемый равным 1,2; γn — коэффициент надежности, принимаемый равным 1,0; φ´I , с´I и γ´I — расчетные значения угла внутреннего трения, сцепления и удельного веса грунта, расположенного выше подошвы фундамента.

Горизонтальное перемещение верха фундамента определяется по формуле

В проектах фундаментов, перемещения которых определены с учетом их упругого защемления в грунте, должны содержаться требования об устройстве обратных засыпок в соответствии с требованиями норм. Степень уплотнения грунта обратной засыпки ρ´dd следует назначать не менее 0,9.

Пример 5.15. Определить крен фундамента, размеры которого и нагрузки приведены на рис. 5.30. Грунт основания — супесь со следующими характеристиками: φII = 28º, сII = 8 кПа, γ = 18,4 кН/м 3 , γd = 16,5 кН/м 3 , Е = 21 МПа. Фундамент возводится в открытом котловане, засыпка пазух которого предусматривается тем же грунтом с уплотнением до удельного веса в сухом состоянии γ´d = 16 кH/м 3 , т.е. степень его плотности ρ´dd = γ´d/γd = 16/16,5 = 0,97 и соответственно β = 0,81. Площадь подошвы фундамента А = 3 · 4,2 = 12,6 м 2 . Момент инерции

I = 3 · 4,2 3 /12 = 18,52 м 4 .

Решение. Для коэффициента сi находим крен фундамента по формуле (5.66) (по табл. 1.15 v = 0,3, по табл. 5.23 при η = 4,2/3 = 1,4; ke = 0,64):

.

Относительное заглубление фундамента λ = d/l = 1. Тогда по выражению (5.71) при kλ = 1 – 0,1 · 1 = 0,9

МПа/м 3 .

Для определения значения id , предварительно по формулам (6.74) вычисляем:

МН/м;

МН;

МН·м.

.

При определении крена фундамента без учета его защемления в грунте необходимо было бы учесть момент M + Qd = 0,8 + 0,08 · 4.2 = 1,14 МН·м. Тогда по формуле (5.66) крен фундамента составил бы I = 0,0034. Таким образом, учет бокового отпора грунта привел к уменьшению крена фундамента и соответственно краевых давлений [см. формулу (5.58)] на 27 %.

Сорочан Е.А. Основания, фундаменты и подземные сооружения

Источник

Оцените статью