Как рассчитать нагрузку плоской кровли

Снеговая нагрузка на крышу

Никого не удивляет ситуация, когда снежная масса на крыше заставляет нервничать, забираться на стены и убирать накопившийся слой снега. Даже если кровля, основание и каркас крыши здания строились из расчета максимальной снеговой нагрузки на крышу, в соответствии с рекомендациями СНиПа 2.01.07-85 , здравый смысл подсказывает, что не следует проверять справедливость формул на своем доме. Для территорий с большим количеством осадков скатные кровли явно имеют преимущества перед плоскими конструкциями хотя бы потому, что большая часть снежной массы на больших углах наклона просто сдувается ветром или соскальзывает вниз.

Как выполнить расчет снеговой нагрузки для плоской поверхности

Для самых простых случаев для плоских крыш можно использовать тот же подход, что и для скатных вариантов кровли. Для этого в СНиП 2.01.07-85 приводится методика и алгоритм учета снеговой нагрузки в общем расчете несущей способности крыш. Мало того, всю математику и теорию прочности заложили в специализированную программку- калькулятор. Проще всего не ломать голову в поисках ответа, как рассчитать параметры крыши, а заложить поправочные коэффициенты в калькулятор и получить готовый ответ по размерам балок и перекрытий.

Для простых зданий и построек снеговую нагрузку на плоскую крышу можно считать, исходя из прочности и несущей способности самого слабого звена в конструкции:

  • Расчет на излом или предельно допустимый прогиб плоского перекрытия крыши. Для железобетонных балок и каркасных несущих ферм, из которых сегодня очень любят строить всевозможные павильоны или торговые центры, давление от снеговой нагрузки определяют по максимально допустимому прогибу одиночного элемента перекрытия;
  • Для простых конструкций плоской крыши, в которых относительно короткие и жесткие балки имеют запредельный запас прочности, расчет от снеговой нагрузки выполняют по величине устойчивости и несущей способности стен и вертикальных опор;
  • В зданиях и постройках, обладающих избыточным запасом прочности, давление на поверхность крыши вследствие снеговой нагрузки берут в расчет для проверки локальной прочности рулонного мягкого покрытия.
Читайте также:  Краска для битумной черепицы

К таким местам относятся зоны примыкания к вертикальным стенам, участки, примыкающие к сливным отверстиям, вентиляционным выводам и аэраторам. В этих местах высота снежного покрова может увеличиваться в разы, соответственно, максимальное разрывное усилие на кровельном полотне тоже будет значительно выше среднего значения по крыше.

Условия, перечисленные во втором пункте, используются для навесов с плоской крышей, гаражей и хозяйственных зданий, в конструкции которых общий вклад от снеговой нагрузки в общую величину давления на вертикальные опоры или стены составляет не менее 20% от рекомендуемого запаса прочности.

Еще большее значение имеет снеговая нагрузка для каркасных построек на основе ферм, вертикальных стоек и балок перекрытия, изготовленных из металлопроката без использования бетонных отливок. В этом случае расчет выполняется по устойчивости сварных пролетов и всего здания под максимальной величиной снеговой и ветровой нагрузки. Сведения о толщине и мощности снегового покрытия выбираются из данных метеорологических служб за последние пятьдесят лет.

Снеговая нагрузка скатных кровель

Несмотря на то, что скатные конструкции кровли имеют определенные преимущества перед плоскими вариантами, в любом случае выполняется расчет давления на несущие элементы крыши в результате возникновения снеговой нагрузки. Цель расчета — определить ориентировочный средний размер стропил в зависимости от общей массы кровельного пирога, снеговой и ветровой нагрузки.

Методика расчета

Стандартный подход в определении величины нагрузки площади ската требует выполнения следующих расчетов:

Как и для плоских вариантов крыш, нагрузку от снеговой массы на скатных конструкциях можно посчитать с помощью программы – калькулятора, в ней содержится много поправочных коэффициентов, поэтому результат получается несколько точнее грубой оценки в одно арифметическое действие.

Как ведет себя снежный покров на различных участках

Зачастую считают, что давление снега на скат кровли не зависит от высоты покрова. Это действительно так, но только для свежевыпавшего снега и только для абсолютно герметичных кровель с углом наклона не менее 25%. Во всех остальных случаях неравномерное давление снега начинает сказываться уже через сутки.

Снег в любом случае начинает перемещаться вниз и таять. Большая часть массы уйдет с коньковой поверхности вниз, ближе к свесам. Часть воды затекает в стыки между листами кровли и может намерзать или улавливаться теплоизоляцией. Чем теплее кровля, тем крепче держится снег на ее поверхности. В некоторых случаях используют обогревающие элементы, позволяющие растопить замерзшую воду в самых опасных для крыши местах- центральной части и на свесах.

Снеговой заряд на крыше начинает перераспределяться вдоль ската, в первую очередь из-за процесса уплотнения, и во вторую — из-за неравномерной деформации стропильной системы. На рисунке приведена схема прогиба скатной кровли, полученная расчетным способом моделирования на компьютере.

Центральная часть стропил, самая гибкая и неустойчивая, прогибается, и соответственно, в каждой точке кровли под снеговой нагрузкой меняется угол наклона ската, а значит, на участках ближе к свесам увеличивается давление на стропильный каркас.

Особенности распределения снеговой нагрузки поверхности крыши

Часто сбивают с толку данные о количестве и мощности снегового покрова в различных климатических поясах. Эти сведения имеют очень среднее значение, в одних условиях из-за наветренной позиции крыши снега меньше, а с подветренной – больше. Кроме того, на самой крыше имеется масса конструктивных элементов и участков, где снеговая нагрузка значительно выше средней величины.Например, углы ендова, слуховые и мансардные окна.

В этих местах при неудачном направлении ветра может образоваться сугроб в несколько раз выше среднего значения. Самым неприятным явлением в перемещении снеговой массы является скопление на свесах огромных зарядов снега, перемешанных с талой водой. Давление такой массы может на порядок превышать среднюю характеристику снеговой нагрузки из справочных данных.

Заключение

На процесс скопления снега может влиять даже материал кровли. Лучше всего показала себя кровля из классической керамической черепицы. Неплохо сбрасывают снег крыши, крытые металлическим оцинкованным покрытием, металлочерепицей, хуже всего борется со снегом ондулин и битумная черепица, рулонная кровля. Поэтому характер покрытия необходимо также учитывать при расчете будущей снеговой нагрузки.

Источник

Как рассчитать плоскую кровлю: снеговая и другие виды нагрузок, габариты

Кровельные конструкции с уклоном в пределах 1-11° относятся к плоским и рассчитываются с учетом повышенных требований к надежности, герметичности и изоляционным свойствам.

При простой конфигурации стен и индивидуальном использовании расчет таких крыш при желании выполняется своими силами, после сбора нагрузок и уточнения условий эксплуатации.

Виды нагрузок и расчет

Конструкция воспринимает два основных вида нагрузок: постоянные, включающие собственный вес перекрытия, ограждений и пирога, и временные (снеговая и ветровая нагрузка, вес оборудования, людей и перемещаемых по поверхности объектов). Оба вида учитываются при расчете в комплексе.

В случае стандартной, неэксплуатируемой плоской крыши суммируются:

  • Собственный вес конструкции (соответственно тип и слои пирога должны быть определены заранее).
  • Снеговая и ветровая нагрузка.
  • Вес людей, периодически перемещающихся по кровле с целью ее осмотра и обслуживания. (до 150 кг/м²).
  • Нагрузка от объектов постоянного размещения (антенн, климатического или вентиляционного оборудования).

Непосредственно перед суммированием все собранные нагрузки умножаются на коэф.надежности (см.табл.):

Расчет нагрузок на плоскую крышу усложняется при планировании ее постоянной эксплуатации, а именно – при размещении на ее поверхности:

  • тяжелого оборудования;
  • кафе;
  • клумб;
  • теплиц;
  • спортивных площадок;
  • паркинга.

Так, при размещении на поверхности кровли кафе, ресторанов или мест возможного скопления людей в общей нагрузке прибавляют от 480 кг/м², спортивных или концертных площадок – 360.

Особого внимания требуют крыши, рассчитываемые на интенсивное перемещение транспорта. Помимо сверхвысоких весовых нагрузок (до 25 т/м²) при их проектировании важно исключить или как минимум снизить влияние вибрационных воздействий.

По понятным причинам расчет таких конструкций доверяют профессионалам.

Снеговая

В отличие от крутых скатных конструкций плоские крыши всегда испытывают влияние снеговых нагрузок, без исключений учитываемых при расчете. Точный алгоритм зависит от назначения крыши, но в большинстве случаев пошагово:

    Определяется максимальная высота снежного покрова на плоской крыше и его вес на 1 м².

Данный параметр можно найти опытным путем (измерив высоту снега на соседних плоских крышах в пик снегопадов) или взять из таблиц, после определения климатической зоны региона строительства.

  • Учитывается влияние поправочных коэффициентов. В случае плоской кровли качество и шероховатость покрытий роли не играет, из-за малого значения коэф.уклона приравнивается 1. Снеговая нагрузка полного типа равняется S=Sp, где Sp – табличное значение веса снега на 1 м².
  • Полученное значение умножается на коэф. надежности, в случае снеговой нагрузки равный 1,4.
  • Результаты умножают на площадь плоской крыши с целью определения давления на несущие конструкции дома и самого перекрытия. Значение является ориентировочным и учитывается при проверке несущих способностей плоской крыши, после суммирования с другими нагрузками.
  • Помимо среднего объема выпадаемого снега при расчете данной нагрузки следует учитывать конкретные климатические особенности региона и участка. Особое внимание уделяется влажности и температурным условиям – накапливающий влагу, но не растаявший снег весит в 2-3 раза больше сухого.

    При повышенных требованиях к надежности или неблагоприятных климатических условиях полную снеговую нагрузку находят путем сложения кратковременной (Sp) и длительной (Sp*0,7) нагрузки. Итоговое значение для каждой все также умножается на коэф. надежности – 1,4.

    Помимо прибавления полной снеговой нагрузки к другим полученное значение используется для проверки прочности и несущих способностей самых слабых элементов плоской крыши. В частности, эта величина учитывается:

    • При расчете предельно допустимого прогиба самой конструкции или отдельных элементов у балочных разновидностей. Ярким примером последних служат плоские кровли торговых центров и павильонов.
    • При проверке несущих способностей вертикальных опор перекрытия или основания плоской крыши.
    • При проверке локальной прочности кровельных покрытий. В отличие от скатных конструкций поверхности плоских крыш покрываются мягкими рулонными материалами. При высоком влиянии снеговой нагрузки требования к их прочности, числу слоев или надежности крепления ужесточаются. Особое внимание уделяется участкам примыкания к парапету и нижним локальным зонам.

    Как посчитать габариты крыши?

    Расчет начинается с составления чертежа конструкции, учитывающего точные размеры постройки, требования к парапету, уклону и системе водоотвода.

    При сравнительно небольшой площади крыша закладывается с одним общим уклоном в одну сторону (в идеале – не выходящую на дорожки, террасы или зоны отдыха и учитывающую влияние сильных постоянных ветров).

    На крышах со сложной геометрией стен или большой площадью план разбивается на отдельные участки с треугольной или ромбовидной разуклонкой, отводящей влагу к внутренним узлам водосбора, парапетным воронкам или к тем же наружным сторонам.

    Площадь

    Простая форма поверхности исключает потребность в сложных формулах: площадь плоской кровли находится путем умножения ее длины на ширину. При этом длину наклонной части находят по формуле:

    • Lk – длина горизонтальной части крыши;
    • α – выбранный или расчетный угол наклона.

    Несмотря на небольшую величину последнего пренебрегать им не рекомендуется, допустимая погрешность при расчете габаритов плоской кровли варьируется в пределах ±10 мм, не более.

    Высоту

    При проектировании таких конструкций заранее выбирается способ заложения нужного уклона (от 1,5-3° для эксплуатируемых крыш, 3-6° — зеленых, инверсионных и эксплуатируемых).

    Облегченные балочные виды, конструкции с основаниями из профнастила или заливаемые на месте бетонные перекрытия могут закладывается с нужным углом на этапе строительства, но при работе с готовыми ж/б основаниями отвод влаги чаще обеспечивает разуклонка. Рекомендуем почитать другие наши статьи об устройстве и монтаже плоской крыши своими руками, а том числе по деревянным балкам и на каркасном доме.

    Требуемая высота подъема рассчитывается путем умножения длины ровной горизонтальной части крыши на тангенс угла ее наклона. При необходимости расчета объема раузуклонки (требуемом для получения количества используемых материалов и их веса) используется простая формула:

    V = (a∙b1 + a∙(b2 – b1) / 2)∙с, где

    • а ­ длина основания разреза (она же – ширина крыши);
    • b1 и b2 – мин. и максимальная высота среза (в частном случае b1=0);
    • с – длина конструкции.

    Толщину

    Алгоритм расчета пирога и сечения плоских крыш зависит от способа его обустройства (с размещением утепляющей прослойки под, между и поверх основания) и типа (классического или инверсионного, эксплуатируемого или нет).

    Число и порядок монтажа слоев выбираются заранее и учитываются при выборе высоты возведения парапета (при наличии, расстояние от наружного слоя до края ограждения не может быть меньше нормативного), определении точной весовой нагрузки от пирога, проектировании систем вентилирования и водоотвода.

    Толщину рулонных покрытий, обмазочного слоя или кровельных покрытий указывает производитель, сложить их вместе не составит труда. Основные сложности заключаются при определении числа и толщины каждого слоя, включая дренажные, армирующие, разделительные или пригрузочные. Особое внимание уделяется толщине утепляющей прослойки, обосновываемой теплотехническим расчетом, учитывающим регион строительства и параметры самой теплоизоляции.

    Сечение несущего основания подбирается с учетом суммарных весовых нагрузок и проверяется на прочность на изгиб. Особого внимания требуют конструкции с большой площадью, прогибающиеся посередине или в местах накопления снега. При существенных снеговых или других временных нагрузках они требуют дополнительного укрепления или герметизации.

    Важно! Помимо суммирования толщины всех прослоек на этом этапе проверяется соответствие их характеристики ожидаемым эксплуатационным нагрузкам.

    Сервисы и онлайн-калькуляторы

    Большинство популярных строительных онлайн-калькуляторов (stroy-calc.ru, grandline.ru и аналоги) рассчитывают эту конструкцию как односкатную с минимальным уклоном.

    Такой подход допустим при заложении облегченных пологих конструкций с балочной системой стропил, но для расчета ж/б перекрытий и пирога эксплуатируемых крыш эти сервисы подходят плохо. В то время как профессиональные программы типа ZVsoft с таким задачами справляются лучше, но в онлайн-режиме они работают редко.

    Выбрать схему разуклонки, раскладки утеплителя, рулонных покрытий и крепежей помогают сервисы производителей кровельных материалов для плоских крыш. Примером служат калькуляторы Технониколь nav.tn.ru.

    Из видео узнаете, как сделать расчет ветровой нагрузки на плоскую кровлю с помощью онлайн-калькулятора:

    Заключение

    В заключение стоит отметить, что при проектировании таких конструкций помимо сбора нагрузок и расчета габаритных размеров (в целом простого и практически исключающего ошибки) следует заранее определится со способом обустройства парапета, участков примыкания к вертикальным конструкциям и узлам водосбора.

    При площади крыши более 50 м² в схему вводят дефлекторы для вывода влаги из пирога, в свою очередь нуждающиеся в выборе правильного места установки.

    Источник

    Оцените статью