Сбор нагрузок на стену первого этажа
Начинаем публикацию статей по расчету кирпичных стен. Прежде, чем приступить к расчетам, необходимо собрать нагрузки. На стены здания в пределах каждого этажа действуют нагрузки от вышележащих этажей, нагрузки от плит перекрытия рассматриваемого этажа и собственный вес отдельных участков стен.
Для начала давайте определимся, какие же нагрузки бывают?
Нагрузки бывают:
— расчетные — значения расчетных нагрузок определяются путем умножения нормативных на коэффициент надежности по нагрузке (γƒ)
Также они классифицируются на:
— временные, которые в свою очередь бывают:
К постоянным относится собственный вес конструкций, который находится путем умножения объема на плотность.
К кратковременным относятся нагрузки от людей, снега, ветра (полные значения) и пр.
К длительным — перегородки, оборудование и пр., а также пониженные кратковременные от людей и снега.
В СНиПе указаны дополнительно особые нагрузки, но в данном примере они нас не интересуют.
Давайте для наглядности представим, что нам необходимо произвести сбор нагрузок на стену первого этажа двухэтажного коттеджа. Высота этажа 3м, длина 6м. Перекрытия железобетонные толщиной 220мм. Для упрощения расчетов принимаем плоскую рулонную кровлю.
Для начала произведем подсчет нагрузок на 1 м 2 перекрытия и покрытия и внесем данные в таблицу. Предположим, что пол второго этажа состоит из стяжки, поверх которой уложен ламинат. Покрытие второго этажа состоит из пароизоляции, утеплителя, цементно-песчаной стяжки и трехслойного гидроизоляционного ковра.
Наименование | Нормативная нагрузка, т | γƒ | Расчетная нагрузка, т |
Покрытие | |||
Собственный вес плиты покрытия 0,22м*1м*1м*2,5 т/м 3 | 0,55 | 1,1 | 0,61 |
Пароизоляция из 1 слоя рубероида | 0,003 | 1,3 | 0,004 |
Утеплитель из керамзита плотностью 400 кг/м 3 , толщина 100мм | 0,04 | 1,3 | 0,052 |
Цементно-песчаная стяжка толщиной 30мм, плотностью 1800 кг/м 3 | 0,054 | 1,3 | 0,07 |
Гидроизоляционный ковер из 3 слоев рубероида | 0,01 | 1,3 | 0,013 |
Итого постоянная | 0,749 | ||
Временная для прочих покрытий (таблица 3, п.9, в) | 0,05 | 1,3 | 0,065 |
Временная снеговая (в районе III -180 кг/м 2 ). Внимание! В СНиП Нагрузки и воздействия дана уже расчетная нагрузка. Нормативная нагрузка определяется путем умножения расчетного значения на 0,7. (μ=1) | 0,126 | 1,4 | 0,18 |
Итого временная | 0,245 | ||
Полная нагрузка на 1м 2 покрытия | 0,994 | ||
Перекрытие первого этажа | |||
0,55 | 1,1 | 0,61 | |
Цементно-песчаная стяжка толщиной 30мм, плотностью 1800 кг/м 3 | 0,054 | 1,3 | 0,07 |
Ламинат толщиной 10мм + подложка 3мм | 0,008 | 1,2 | 0,01 |
Итого постоянная | 0,69 | ||
Временная для помещений жилых зданий | 0,15 | 1,3 | 0,2 |
Итого временная | 0,2 | ||
Полная нагрузка на 1м 2 перекрытия | 0,89 |
Теперь нам нужно определить грузовую площадь. Чтобы лучше понять, что такое грузовая площадь, посмотрим на картинку ниже.
Если нагрузка собирается для 1 погонного метра стены, то грузовая площадь будет равна произведению 1-го метра на половину расстояния между наружной и внутренней несущей стеной.
Розовым цветом отмечена грузовая площадь для средней стены, а зеленым цветом — для наружных стен.
Таким образом, для рассматриваемого нами участка кладки грузовая площадь будет равна 1м*2м=2м 2
Перемножив грузовую площадь на значения из таблицы, получим нагрузку от перекрытия и покрытия для 1 погонного метра кирпичной кладки.
От покрытия:
— постоянная — 0,749*2=1,498 т
— временная — 0,245*2=0,49 т
Полная P2= 0,994*2=1,988 тонны
От перекрытия:
— постоянная — 0,69*2=1,4 т
— временная — 0,2*2=0,4 т
Полная P1= 0,89*2=1,8 тонн
Осталось посчитать вес кладки второго этажа (G2) и вес парапета (Gп). Высота 2го этажа — 3 м, парапета — 0,7 м. Толщина — 0,25 м, плотность кладки — 1,8 т/м 3 .
Вес 1 погонного метра равен:
Полная нагрузка, которая действует на 1 пог.м кладки первого этажа составит:
Для дальнейших расчетов нам также понадобится значение длительной продольной силы. Она равна сумме постоянной нагрузки от перекрытий и покрытий, веса вышележащих стен и длительной временной от перекрытий и покрытий. В нашем примере длительную временную мы не рассматривали.
Теперь, когда все нагрузки собраны, можно приступать к Расчету стены на прочность.
Статья была для Вас полезной?
Источник
Расчет нагрузки на кирпичную стену – пример определения несущей способности конструкции
Проектирование и возведение сооружений из кирпича требует дополнительного расчета нагрузки. Несущая способность кирпичной кладки при неправильной закладке приводит к разрушению стены. Поэтому инженеры с максимальной точностью рассчитывают показатели. Для этого нужно знать марку кирпича по плотности, осуществляемую нагрузку, устойчивость, сопротивление сжатию и теплопередаче.
Виды нагрузок на кирпичную стену
Нагруженность элементов конструкции подразделяют на 2 вида:
К постоянным относят удельную массу перегородок, перестенок, стен и других элементов, а также постоянное влияние подземных вод, горных пород и их гидростатика. Временные, как становится ясно из названия, это сбор нагрузок характерного типа, которые могут изменяться. К ним относят:
На данный показатель может влиять наличие снега.
- вес временно привезенного оборудования либо стационарных объектов;
- разность перепадов давления в проложенных трубах здания;
- нагрузки климатического характера влияния окружающей среды (снег, дождь, ветер).
Если сооружение проектируется с малым количеством этажей, то строители могут пренебрегать данными касательно временных напряжений на здание, однако только при условии создания повышенного запаса прочности на этапах его строительства.
От чего зависит нагруженность кирпичной кладки?
Для проведения расчета первым делом необходимо определить все факторы, влияющие на прочность участка проектирования, а именно:
Перед началом проведения калькуляций следует учесть, что в конструкции есть подоконники.
- защитные возвышения по периметру кровли;
- подоконники;
- простенки;
- участки над окнами с учетом полного веса всех составляющих стены;
- допустимые нагрузки на плиту и между перекрытиями;
- удельную массу настила;
- для зимнего периода также учитывают вес снежного покрытия на крыше и влияние сильных порывов ветра.
Для зданий более 2-х этажей проводят расчет для определения способности их сопротивляемости. С помощью формул высчитывают нагрузки от каждого отдельного этажа конструкции и точки давления. Высокие нагрузки образовываются в нижних частях кирпичного столба. Если условия по правильному соотношению величин толщины и высоты не будут выполнены, то с увеличением срока эксплуатации стена начнет выгибаться и может полностью разрушиться от перенапряжения.
В строительной индустрии предусматривается толщина кладки из кирпича для несущих стен от 1,5 до 2,5 изделия. Но окончательное вычисление зависит от высотности объекта. Определяется устойчивость к нагрузкам непосредственно с помощью расчета, но в случае строительства 3 и более этажных зданий нужен тщательный анализ по формулам, которые учитывают сложение нагрузок от каждого этажа, угол приложения силы и возможные дополнительные напряжения.
При планировании конструкции несущего типа материал стоит укладывать не менее, чем в 1,5 камня. Вернуться к оглавлению
Пример расчета нагруженности кирпичной стены
Чтобы разобраться в вопросе нагрузок несущих конструкций, можно изучить пример выполнения проекта, в котором не учитываются временные эксплуатационные нагрузки. Например, здание 4-х этажей с толщиной стен 64 см (Т), удельный вес с учетом всех элементов — кирпича, штукатурки и раствора составляет М=18 кН/м3. По ГОСТу 11214—86, выполнена закладка окон, их размеры по ширине 100—150 см (Ш) по высоте 100—130 см (В).
Приложение веса на простенок от элементов, находящихся выше, согласно замерам, равен 0,64*1,42 м, а высота одного этажа (Вэт) 4200 мм. При этом сила давления на участок происходит под углом 45°. При слое штукатурки в 2 см определяют нагрузку от стен следующим алгоритмом: Нстен=(4Вэт+0,5(Вэт-В1)3—4Ш1*В1)(h+0,02)М. Подставив значения, получают 0, 447 МН. Определение требуемой нагруженной площади П=Вэт*В½-Ш/2. В этом случае значение равно 6 м. Нп =(30+3*215)*6 = 4,072МН. Получаемая нагрузка на кладку из кирпича от перекрытий 2-го этажа равняется: Н2=215*6 = 1,290МН, в том числе Н2l=(1,26+215*3)*6= 3,878МН. Удельный вес кирпичного простенка высчитывается по формуле: Нпр=(0,02+0,64)*(1,42+0,08)*3*1,1*18= 0,0588 МН.
Необходимый показатель для данной конструкции можно вычислить, используя некоторые данные и формулы.
Расчет несущей способности кирпичной стены выполняется по максимально загруженным простенкам нижнего этажа.
При обследовании элемента выбирают части стены с минимальной шириной и толщиной. Чаще всего они расположенными в проемах дверей или окон. Если условие У >= Н на устойчивость стены при расчетах подтверждается, то проект выполнен верно и прочность конструктивных элементов достаточна. Расчет простенка для каждого этажа и суммирование значений показывают общую нагрузку здания и выполняются согласно СНиП II-22—81.
Недостаточное сопротивление стены из кирпича
Если при определении расчетного сопротивления данные устойчивости менее ее нагрузки, следует выполнять армирование стенок и перегородок. При упрочнении материала прирост показателей прочности составляет 40%. Далее следует заново пересчитать показатели устойчивости, учитывая усиление стальными элементами. Зная что У = 1,5, а Н = 1,113, рассчитывается коэффициент усиления, поделив значения, К = 1,348. Таким образом, увеличить прочностные показатели нужно на 34,8%. Проводя армирование железной обоймой, можно достичь нужных показателей прочности, если правильно выбрать марку кирпича, усиление, определить конструкцию фундамента и характеристики грунта под фундаментом.
Источник