Контактные напряжения по подошве жестких фундаментов

3.7. Распределение напряжений под жестким штампом

Рассматривая случаи действия местной нагрузки на поверхности грунта, мы предполагали, что нагрузка следует за деформациями поверхности массива так, как это происходило бы при передаче давления от насыпи сыпучего материала. В действительности, нагрузка на грунт передается через более или менее жесткий штамп (фундамент), в связи с чем по подошве последнего происходит перераспределение напряжений с отклонением от равномерного. Это сказывается и на распределении напряжений в сечениях грунтового массива, расположенных на близком расстоянии от нагруженной поверхности. На глубине, превышающей полуторную ширину жесткой нагрузки, распределение напряжений в грунте не зависит от распределения нагрузок по поверхности, а зависит лишь от величины и положения равнодействующей нагрузок.

Вопросы распределения напряжений по подошве фундаментов имеют важное практическое значение, так как, зная реактивное давление и приложив его к подошве фундаментной балки, можно найти величину расчетных изгибающих моментов и перерезывающих сил.

Характер распределения напряжений под подошвой зависит от жесткости фундамента. Различают три типа фундаментов: абсолютно жесткие, абсолютно гибкие и фундаменты конечной жесткости.

Примеры. К абсолютно жестким относятся массивные фундаменты под мостовые опоры, дымовые трубы, тяжелые прессы; к абсолютно гибким – днища металлических резервуаров, земляные насыпи; плитные ленточные фундаменты, балки имеют конечную жесткость.

Контактные напряжения под подошвой абсолютно жесткого круглого фундамента определяются по формуле

, (3.35)

где r – радиус подошвы фундамента;  – расстояние от центра до любой ее точки,   r; Pm – среднее давление на единицу площади.

Для плоской задачи формула имеет вид

, (3.36)

где y – расстояние по горизонтали от середины фундамента до рассматриваемой точки; b1 – полуширина фундамента.

Согласно уравнениям (3.35), (3.36) по краям площадки напряжения имеют бесконечно большую величину, но поскольку грунт не может выдержать весьма больших нагрузок, близ края штампа возникают пластические деформации, за счет которых происходит перераспределение напряжений, приводящее к уменьшению напряжений по краям подошвы штампа. Эпюра распределения напряжений по подошве штампа приобретает седловидное очертание, характерное для всех без исключения грунтов, и сохраняется до тех пор, пока среднее давление на подошву штампа не превысит некоторого критического давления, при котором начинаются пластические деформации выжимания грунта из-под штампа в стороны (рис.3.26).

Рис.3.26. Распределение давлений по подошве жесткого штампа:

1 – для упругого тела;

2 – с учетом пластических деформаций

Для подошвы фундаментов эпюры контактных давлений по полученным решениям, изложенным в курсе сопротивления материалов, будут прямолинейной формы – равномерной или трапецеидальной, по строгому решению теории упругости для абсолютно жестких фундаментов они всегда седлообразные, а для фундаментов конечной жесткости эпюра принимает очертание от седлообразного до параболического (рис.3.27) в зависимости от гибкости фундамента Г. Критерием оценки жесткости фундамента может служить показатель гибкости по М.И.Горбунову-Посадову

,

где E0 и Ek – модули деформации грунта основания и материала конструкции; l и h – длина и толщина конструкции. Если Г=0, конструкция абсолютно жесткая.

На рис.3.27 показано три кривых распределения контактных давлений в зависимости от гибкости фундамента. Следует отметить, что распределение контактных давлений по подошве фундамента зависит от глубины заложения, величины внешней нагрузки и других факторов.

Источник

Определение напряжений по подошве фундаментов и сооружений

Общие положения.При взаимодействии фундаментов и сооружений с грунтами основания на поверхности контакта возникают контактные напряжения. Знание контактных напряжений необходимо как для расчета напряжений в основании, создаваемых сооружением, так и для расчетов самих конструкций.

Отметим, что расчет сооружений на действие контактных напряжений обычно рассматривается в курсе строительной механики.

Характер распределения контактных напряжений зависит от жесткости, формы и размеров фундамента или сооружения и от жесткости (податливости) грунтов основания. Различают три случая, отражающих способности сооружения и основания к совместной деформации:

1) абсолютно жесткие сооружения, когда деформируемость сооружения ничтожно мала по сравнению с деформируемостью основания, и при определении контактных напряжений сооружение можно рассматривать как недеформируемое;

2) абсолютно гибкие сооружения, когда деформируемость сооружения настолько велика, что оно свободно следует за деформациями основания;

3) сооружения конечной жесткости, когда деформируемость сооружения соизмерима с деформируемостью основания; в этом случае они деформируются совместно, что вызывает перераспределение контактных напряжений.

Характерными примерами абсолютно жестких конструкций являются массивные фундаменты под мостовые опоры, дымовые трубы, тяжелые прессы, кузнечные молоты и т. д., абсолютно гибких – земляные насыпи, днища металлических резервуаров и т. п. Большинство сооружений (плитные фундаменты, балки, ленточные фундаменты) по условиям работы конструкций имеют конечную жесткость.

Критерием оценки жесткости сооружения может служить показатель гибкости по М.И. Горбунову-Посадову

е ≈ 10 (El 3 /Eкh 3 ), (8.1)

где Еи Ек модули деформации грунта основания и материала конструкции; l и h— длина и толщина конструкции.

Конструкция сооружения или фундамента считается абсолютно жесткой, если t≤1. В первом приближении жесткость конструкции можно оценить исходя из соотношения ее толщины и длины. При h/l>1/3 конструкция может рассматриваться как абсолютно жесткая.

Существенное значение имеет также соотношение длины l и ширины b сооружения. При 1/b≥0 распределение контактных напряжений соответствует случаю плоской задачи, при. l/b 2 ) цилиндрическая жесткость полосы; f(x) интенсивность заданной на полосу нагрузки; р(х) – интенсивность неизвестной эпюры контактных напряжений. Напомним, что индекс «к» относится к конструкции; следовательно, Еки vк – соответственно модуль упругости и коэффициент Пуассона материала полосы; Iк – момент инерции ее поперечного сечения.

В уравнении (8.2) содержатся две неизвестные величины: w(x) и р(х). Следовательно, для решения задачи необходимо введение дополнительного условия. Это условие определяется в зависимости от принятия той или иной модели: местных упругих деформаций или упругого полупространства.

Модель местных упругих деформаций.Предпосылки этой модели впервые были сформулированы русским академиком Фуссом в 1801 г., а сама модель разработана в 1867 г. Винклером для расчетов железнодорожных шпал. В дальнейшем модель местных упругих деформаций была развита в работах Н. П. Пузыревского, С. П. Тимошенко, А. Н. Крылова, П. Л. Пастернака и др.

Рис. 8.2. Схема балки (а) и расчетная схема для случая плоской задачи (б)

Согласно этой модели, реактивное напряжение в каждой точке поверхности контакта прямо пропорционально осадке поверхности основания в той же точке:

p(x) = kw(x), (8.3)

где к — коэффициент пропорциональности, часто называемый коэффициентом постели, Па/м.

Схема деформирования такого основания показана на рис. 8.3, а. Видно, что в соответствии с моделью местных упругих деформаций осадки поверхности основания за пределами габаритов фундамента отсутствуют, т. е. фундамент как бы установлен на пружинах, сжимающихся только в пределах его контура.

Рис. 8.3. Деформации поверхности основания: а – по модели упругих деформаций; б – по модели упругого полупространства

Модель упругого полупространства.Эта модель была предложена Г. Э. Проктором в 20-х годах нашего столетия и развита благодаря работам Н. М. Герсеванова, М. И. Горбунова-Посадова, Б. Н. Жемочкина, А. П. Синицына и других ученых.

В отличие от предыдущей модели в этом случае поверхность грунта оседает как в пределах площади загрузки, так и за ее пределами (рис. 8.3, б), причем кривизна прогиба зависит от механических свойств грунтов и мощности сжимаемой толщи в основании.

В случае плоской деформации прогиб поверхности под действием сосредоточенной силы Р описывается уравнением

(8.4)

где С = Е/(1 – ν 2 ) – коэффициент жесткости основания; х — координата точки поверхности, в которой определяется осадка; ζ — координата точки приложения силы Р; D — постоянная интегрирования. При определении прогибов поверхности от действия распределенной нагрузки уравнение (8.4) следует проинтегрировать по площади загружения.

Недостаток модели упругого полупространства заключается в том, что в ней не ограничивается мощность сжимаемой толщи в основании сооружения. В реальных условиях взаимодействия фундамента и основания мощность сжимаемой толщи обычно бывает ограничена, что влияет на характер распределения контактных напряжений. В связи с этим разработаны различные модификации модели упругого слоя грунта, подстилаемого недеформируемой толщей, приведенные в работах О. Я. Шехтер, К. Е. Егорова, И. К. Самарина, Г. В. Крашенинниковой и др.

Общая схема определения контактных напряжений с использованием указанных выше моделей заключается в совместном решении уравнения (8.2) и условия (8.3) в случае модели местных упругих деформаций или уравнений (8.2) и условия типа (8.4) в случае модели упругого полупространства. Методы решения этих задач приведены, например, в учебнике П. Л. Иванова (1991).

Для практических расчетов контактных напряжений используются приведенные в табличной форме решения М. И. Горбунова-Посадова, Б. Н. Жемочкина, А. П. Синицьша, Г. В. Крашенинниковой и др. Наиболее полные сведения по этому вопросу представлены в монографии М. И. Горбунова-Посадова, Т. А. Маликовой, В. И. Соломина «Расчет конструкций на упругом основании», удостоенной в 1987 г. Государственной премии СССР.

Область применения различных моделей. Практика расчетов показывает, что модель местных упругих деформаций позволяет получить хорошее совпадение с действительностью при возведении фундаментов на сильносжимаемых грунтах (при Е≤ 5 МПа), на лёссовых просадочных грунтах, а также при ограниченной толще сжимаемых грунтов, подстилаемых практически недеформируемыми, например скальными породами. Модель упругого полупространства применима при наличии в основании достаточно плотных грунтов и при не слишком больших площадях опорных поверхностей. Для сооружений с площадью опирания в десятки и сотни квадратных метров более близкие к действительности результаты дает модель упругого слоя ограниченной мощности.

Контактные напряжения на подошве центрально-загруженных абсолютно жестких фундаментов.При определении контактных напряжений в этом случае исходят из того, что вертикальные перемещения любой точки поверхности грунта в уровне подошвы одинаковы, т. е. w(x,у)=const. Тогда для круглого в плане фундамента контактные напряжения определятся выражением

(8.5)

где рm — среднее напряжение под подошвой фундамента радиусом r; ρ — расстояние от центра фундамента до точки, в которой определяется ордината контактного напряжения р(ρ).

Аналогичным образом определяются и контактные напряжения под жестким полосовым фундаментом в случае плоской задачи:

(8.6)

где х — расстояние от середины фундамента до рассматриваемой точки; а = b/2— полуширина фундамента.

Приведенные решения показывают, что теоретически эпюра контактных напряжений под жестким фундаментом имеет седлообразный вид с бесконечно большими значениями напряжений по краям (при ρ = r или x=b/2). Однако вследствие пластических деформаций грунта в действительности контактные напряжения характеризуются более пологой кривой и у края фундамента достигают значений, соответствующих предельной несущей способности грунта (пунктирная кривая на рис. 8.4, а).

Рис. 8.4. Эпюры контактных напряжений: a — под жестким круглым штампом; б— под плоским фундаментом при различном показателе гибкости

Изменение показателя гибкости существенно сказывается на изменении характера эпюры контактных напряжений. На рис. 8.4, б в качестве примера приведены контактные эпюры для случая плоской задачи при изменении показателя гибкости t от 0 (абсолютно жесткий фундамент) до 5.

Как отмечалось выше, достоверное знание контактных напряжений необходимо для расчетов конструкции фундаментов сооружений, взаимодействующих с грунтом. При расчетах напряжений в основаниях от действия нагрузок, соответствующих контактным напряжениям, часто оказывается возможным вводить существенные упрощения. Это связано с тем, что неравномерное распределение контактных напряжений по подошве фундамента оказывает заметное влияние на изменение напряжений лить в верхней части основания на глубину порядка половины ширины фундамента.

Упрощенное определение контактных напряжений. Если контактные напряжения по подошве фундамента определяются для последующих расчетов напряжений в основании, то допускается независимо от жесткости фундамента .использовать формулы внецентренного сжатия. Тогда для центрально-нагруженного силой Р фундамента будет иметь место равномерное распределение напряжений по его подошве: р=Р/А, где А — площадь фундамента. В случае плоской задачи при нагружении фундамента силой Р и моментом М, действующим в этой плоскости, краевые значения контактных напряжений определятся выражением

(8.7)

где W — момент сопротивления площади подошвы выделенной полосы фундамента. Распределение контактных напряжений между этими значениями будет иметь линейный характер.

Теперь уже распределение напряжений в основании ниже подошвы фундамента можно рассчитать, если рассматривать полученную таким образом эпюру контактных напряжений как абсолютно гибкую местную нагрузку, действующую в этой плоскости.

Источник

Читайте также:  Ленточный фундамента дома коттеджа
Оцените статью