Методичка по расчету столбчатого фундамента

Как рассчитать столбчатый фундамент?

Фундаментное основание столбчатого типа представляет собой бетонную или металлическую раму (ростверк), опирающуюся на вертикальные столбы, заглубленные в грунт на определенную глубину.

Материалом для устройства столбов может служить железобетон, полнотелый глиняный кирпич, блоки, металлические трубы или бутовый камень. В нижней части каждой опорной колонны может быть предусмотрена более широкая подошва для увеличения площади опоры. Поперечное сечение вертикальных опор может быть круглым или квадратным.

Варианты столбчатых оснований.

Надежность фундаментной конструкции в значительной мере зависит от расчета столбчатого фундамента и правильного расположения опорных столбов, которые должны быть установлены:

  • под всеми углами здания;
  • в местах примыкания и пересечения стен;
  • на прямых участках ростверка не далее двух метров друг от друга.

Конструкция рамы ростверка должна служить опорой для всех несущих стен и перегородок. При большой длине здания следует предусмотреть дополнительные поперечные перемычки для обеспечения более надежной связи между продольными балками.

Требования к применению столбчатых оснований

Низкая стоимость конструкции с опорой на вертикальные столбы делает ее весьма привлекательной для частных застройщиков. Однако этот тип фундаментов имеет ряд ограничений по применению.

К неблагоприятным условиям для применения столбчатых оснований относят:

  • вероятность горизонтальной подвижности грунтов и боковые внешние нагрузки;
  • склонную к просадке или пучинистости почву;
  • высокий уровень грунтовых вод, которые не должны подходить к подошве ближе 500 мм;
  • глубина промерзания грунта более 1,5 м;
  • перепады высот на участке застройки больше 2-х метров;
Читайте также:  Котел для ушп фундамента

Уменьшенная несущая способность позволяет использовать его только для каркасных домов, строительства легких жилых зданий из щитовых и деревянных материалов, а так же небольших бань, веранд, пристроек, хозяйственных сооружений и под каркасный гараж.

Удельный вес стенового материала для одноэтажных зданий не должен превышать 1000 кг/м 3 , а толщина стен — менее 400 мм. Применение тяжелых железобетонных перекрытий, балок и перемычек не допускается.

Для таких помещений как веранды, пристройки и флигеля, рекомендуется делать собственный фундамент. Вес их конструкций намного меньше самого жилого дома. Поэтому можно использовать более простую и дешевую конструкцию. Кроме того, такое отделение может значительно уменьшить общую площадь дома и приведет к другим расчетным результатам.

Исходные данные для проведения расчета

Для того, чтобы правильно выполнить расчет количества опор столбчатого фундамента, необходимо обладать информацией. К таким исходным данным для расчета относится:

  • отчет об инженерно-геологических изысканиях, включающий структуру поперечных разрезов почвы и данные о залегании грунтовых вод;
  • несущая способность грунта;
  • глубина промерзания и величина снегового покрова в данной местности, взятые из СП 131.13330.2012 «Строительная климатология»;
  • данные об удельном весе строительных конструкций, из которых будет построено здание, взятые из СП 20.13330.2016 «Нагрузки и воздействия».

Если вы решили не привлекать специалистов для проведения изыскательских работ, а сведений о геологии участка у вас нет, то потребуется выполнить изучение грунтов самостоятельно.

Для этого на участке застройки необходимо выкопать 2-3 шурфа на глубину не менее чем 0,5 метра ниже опорной подушки фундамента. Если при этом будет обнаружен влагосодержащий слой, то использовать для постройки столбчатый фундамент нельзя. Придется выбрать более дорогое основание.

Оценка несущей способности грунта

Природный состав грунта определяет его несущую способность и поэтому, после изучения геологических данных, необходимо выбрать из табл. 1-5 на стр.6 СНиП 2.02.01-83 «Основания зданий и сооружений» данные о расчетном сопротивлении грунтов, соответствующих реальной ситуации. При этом следует учитывать, что приведенные числовые значения относятся к глубине заложения более 1,5 метра. Подъем на каждые 500 мм вверх увеличивает это значение в 1,4 раза.

Таблица сопротивлений грунта (R).

Определение весовых нагрузок на фундаментное основание

Вес строительных конструкций здания, снегового покрова в зимнее время, инженерного оборудования и бытового оснащения является важнейшим определяющим фактором для расчета фундамента. Можно попытаться выполнить расчет каждой отдельной конструкции по удельному весу составляющих ее элементов, но это очень большая и сложная задача. В справочной литературе уже приводятся средние обобщенные данные, которые можно взять за основу. Вот некоторые из них:

  • стена из бруса при толщине 150 мм – 120 кг/м 2 ;
  • бревенчатые стены 240 мм – 135 кг/м 2 ;
  • каркасные стены с утеплителем толщиной 150 мм – 50 кг/м 2 ;
  • пенобетонные блоки марки D600300 мм – 180 кг/м 2 ;
  • междуэтажное перекрытие по деревянным балкам с утеплителем – 100 кг/м 2 ;
  • такое же чердачное перекрытие с учетом утеплителя – 150 кг/м 2 ;
  • бетонные пустотные плиты – 350 кг/м 2 ;
  • эксплуатационная нагрузка перекрытий – 200 кг/м 2 ;
  • кровля с покрытием из металлочерепицы – 30 кг/м 2 ;
  • крыша с шифером – 50 кг/м 2 ;
  • кровля с керамической черепицей – 80 кг/м 2 ;
  • снеговая нагрузка для средней полосы России – 100 кг/м 2 ;
  • для южных регионов – кг/м 2 .

При проведении расчетов так же следует учесть массу самого фундамента. Для этого следует определить его объем и умножить на средний удельный вес железобетона – 2500 кг/м2. Угол скатной крыши может уменьшить или увеличить указанную здесь величину при его изменении.

Вес строительных конструкций.

Общий расчет столбчатого фундамента

Выполнение расчета фундаментной конструкции основано на определении суммарной площади сечения всех опорных столбов фундамента (S). Она определяется как отношение общей массы здания (Р) к расчетному сопротивлению грунта (Ro) по формуле:

S = 1.4 x P/Ro, где 1,4 — это коэффициент запаса прочности.

При составлении предварительной схемы расположения фундаментных столбов была определена их расстановка и минимально возможное количество. Поэтому, разделив общую площадь сечения на число опор, можно получить размеры сечения каждого отдельного столбчатого фундамента под колонну.

Если размер колонн получился менее 400 мм, то следует принять этот минимальный размер. При необходимом сечении столбов более 600 мм, требуется увеличить их количество на схеме, изменяя расстояния между опорами на прямых участках таким образом, чтобы весовая нагрузка распределялась более равномерно.

Минимальная площадь опорной подушки должна превышать сечение столба в полтора раза при толщине 400 мм.

Подошва столба изготавливается из железобетона в опалубке с обязательным двухрядным армированием и подстилающим слоем из щебня толщиной не менее 100 мм.

Опирающаяся плоскость нижней части опоры должна находиться на 30-40 см глубже уровня промерзания грунта.

Карта глубин промерзания грунта в России.

Пример расчета количества столбов

Задача – рассчитать фундамент для небольшого каркасного дома в средней климатической полосе России размером 5 х 6 метров при высоте этажа 3,0 метра и кровле из металлочерепицы. Пример расчета столбчатого фундамента включает несколько пунктов.

  • принимаем в качестве опоры фундамент на круглых железобетонных столбах;
  • основной грунт на участке застройки суглинок (Ro – 3,5 кг/см 2 );
  • глубина промерзания 1,1 метра;
  • при бурении контрольного шурфа грунтовые воды не обнаружены.

Определение весовой нагрузки:

  1. общая площадь наружных стен и перегородок составляет 76 м 2 и тогда их общий вес составит 76 х 50 = 3800 кг;
  2. масса цокольного перекрытия площадью 30 м 2 составляет 30 х 100 = 6000 кг., а вес чердачного перекрытия – 9000 кг;
  3. площадь крыши составляет 52 м 2 , а значит весит такая кровля 30 х 52 = 1560 кг;
  4. снеговая нагрузка составит 20% от нормативной при скате 46˚, что составит 100 х 52 х 0,2 = 1040 кг;
  5. эксплуатационная нагрузка на одном этаже составляет 30 х 210 = 6300 кг;
  6. для оценки массы фундамента возьмем количество столбов из предварительно составленной схемы и примем их диаметр равным 400 мм, тогда масса 10 столбов высотой 1,5 метра составит 540 кг;
  7. вес ростверка — это масса железобетонных балок сечением 400х400 м, которая будет равна 980 кг.

Условный вес деревянного и кирпичного дома.

Суммируя полученные данные, получаем общий вес дома равным 29110 кг. Для определения суммарной площади сечения столбов делим 29110/3,5 = 8317 см 2 .

Тогда площадь сечения каждого из 10-ти столбов будет равна 832 мм 2 , что соответствует диаметру 326 мм. Принимаем диаметр равным 400 мм и определяем, что для данного здания необходимо минимальное количество столбов составляет 9 штук.

Однако, учитывая необходимость прочностного запаса 40%, к установке должно быть принято 13 столбов диаметром 400 мм.

Источник

buildingbook.ru

Информационный блог о строительстве зданий

  • Home
  • /
  • Железобетонные конструкции
  • /
  • Конструкции зданий и сооружений
  • /
  • Расчёт столбчатого фундамента под колонну при действии вертикальной нагрузки и момента в одном направлении

Расчёт столбчатого фундамента под колонну при действии вертикальной нагрузки и момента в одном направлении

В этой статье рассмотрим расчёт фундамента под колонну по 1-му предельному состоянию при нагружении фундамента вертикальной нагрузкой и горизонтальной нагрузкой с изгибающим моментом, действующими в одной плоскости.

Исходные данные

Исходными данными для расчёта фундамента будут нагрузки, приходящие на фундамент от колонны и инженерно-геологические изыскания.

В результате расчёта рамы в расчётной программе получили следующие нагрузки на фундамент:

N=21.3 т (вертикальная нагрузка)

Mx=14.8 т*м (изгибающий момент)

My=0, Qy=0 (Расчёт при действии моментов в 2-х плоскостях рассмотрю отдельно в следующих статьях)

Qx=2.8 т (поперечная нагрузка)

Хочу отметить, что лучше всего проверить 2-а расчётных сочетания:

  1. Полная ветровая, снеговая, вес конструкций, равномерно-распределённая
  2. Полная ветровая и вес конструкций

Дело в том, что одно из условий расчёта является недопущение отрыва края фундамента от земли и при отсутствии снеговой нагрузки вертикальная нагрузка будет меньше и соответственно меньше сопортивления изгибающему моменту.

Глубина сезонного промерзания – 1,79 м;

Уровень грунтовых вод 1,6 м;

Прочностные свойства грунтов определяются по инженерно-геологическим изысканиям. Для этого ищем инженерно-геологический разрез под нужный фундамент и таблицу с нормативными и расчётными характеристиками грунтов. Для расчёта по 1-му предельному состоянию (расчёту на прочность) необходимы расчётные характеристики при α=0.95 (доверительная вероятность расчётных значений), согласно п.5.3.17 СП 22.13330.2016.

ИГЭ-1 — насыпной грунт — песок разной крупности c вкл. строительного мусора до 15-20%, комки суглика, обломки ж.д. плит (в расчёте не участвует т.к. отметка низа фундамента находится ниже этого слоя грунта);

ИГЭ-2 — песок средней крупности, средней плотности, водонасыщенный: (e=0.65, ρ=1,8 т/м³, Е=30 МПа, ϕ=35°, С=1 кПа).

ИГЭ-3 — песок средней крупности, с редкими прослоями текучей супеси, суглинка, глиниcтый средней плотности, водонасыщенный: (e=0.6, ρ=1,82 т/м³, Е=35 МПа, ϕ=36°, С=1,5 кПа).

Уровень грунтовых вод 1,8 м от уровня земли.

Расчёт фундамента

Схема приложения нагрузок на фундамент выглядит следующим образом:

Глубина заложения фундамента

Глубину заложения фундамента определяем в зависимости от максимальной глубины сезонного промерзания, которая дана в отчёте по инженерно-геологическим изысканиям. В моём случае нормативная глубина сезонного промерзания равна dfn=1,79м.

Расчётная глубина сезонного промерзания вычисляется по формуле 5.4 СП 22.13330.2016

где kh — коэффициент, учитывающий влияние теплового режима сооружения, принимаемый для наружных фундаментов отапливаемых сооружений — по таблице 5.2 СП 22.13330.2016; для наружных и внутренних фундаментов неотапливаемых сооружений kh=1,1, кроме районов с отрицательной среднегодовой температурой;

В нашем случае здание неотапливаемое, поэтому

Глубина заложения фундамента должна быть не выше расчётной глубины промерзания (согласно таблице 5.3 СП 22.13330.2016). Для отапливаемых зданий допускается устраивать фундаменты внутри здания (не под наружными стенами) выше глубины промерзания, но должно быть гарантировано, что в холодное время года будет отопление здания. Если же допускается, что здание могут подвергнуть консервации или отключить отопление, тогда и внутренние фундаменты также должны быть заложены на расчётную глубину промерзания.

Предварительные размеры фундамента

Определяем предварительно площадь основания фундамента.

Предварительные размеры фундамента определяем по формуле:

N — вертикальная нагрузка от колонны, которую мы получили при расчёте каркаса здания (N=21,3 т=213 кН);

R0 – расчётное сопротивление грунта, предназначенное для предварительного расчёта приведены в Приложении Б СП 22.13330.2016 (в нашем случае Таблица Б.2 для песка средней крупности и средней плотности R0 = 400кПа, для глины и других грунтов см. другие таблицы в приложении Б);

Таблица Б.2 — Расчетные сопротивления R0 песков

Пески Значения R0, кПа, в зависимости от плотности сложения песков
плотные средней плотности
Крупные 600 500
Средней крупности 500 400
Мелкие:
маловлажные 400 300
влажные и насыщенные водой 300 200
Пылеватые:
маловлажные 300 250
влажные 200 150
насыщенные водой 150 100

ȳ — среднее значение удельного веса фундамента и грунта на его обрезах, предварительно принимаемое ȳ=20 кН/м³;

d – глубина заложения фундамента (в нашем случае d=2 м)

+20% т.к. фундамент внецентренно сжатый 0,72 м²

Размеры подошвы фундамента назначаются с шагом 0,3 м, размером не менее 1,5х1,5м (Таблица 4 Пособия по проектированию фундаментов на естественном основании)

Таблица 4 Пособия по проектированию фундаментов на естественном основании

Эскиз фундамента Модульные размеры фундамента, м, при модуле, равном 0,3
h hpl соответственно hpl подошвы подколонника
h1 h2 h3 квадратной b ´ l прямоугольной b ´ l под рядовые колонны bcf ´ lcf под колонны в температурных швах bcf ´lcf
1,5 0,3 0,3 1,5´1,5 1,5´1,8 0,6´0,6 0,6´1,8
1,8 0,6 0,3 0,3 1,8´1,8 1,8´2,1 0,6´0,9 0,9´2,1
2,1 0,9 0,3 0,3 0,3 2,1´2,1 1,8´2,4 0,9´0,9 1,2´2,1
2,4 1,2 0,3 0,3 0,6 2,4´2,4 2,1´2,7 0,9´1,2 1,5´2,1
2,7 1,5 0,3 0,6 0,6 2,7´2,7 2,4´3,0 0,9´1,5 1,8´2,1
3,0 1,8 0,6 0,6 0,6 3,0´3,0 2,7´3,3 1,2´1,2 2,1´2,1
3,6 3,6´3,6 3,0´3,6 1,2´1,5 2,1´2,4
4,2 4,2´4,2 3,3´3,9 1,2´1,8 2,1´2,7
Далее с шагом 4,8´4,8 3,6´4,2 1,2´2,1
5,4´5,4 3,9´4,5 1,2´2,4
0,3 м 4,2´4,8 1,2´2,7
или 4,5´5,1
0,6 4,8´5,4
5,1´5,7
5,4´6,0

Предварительно назначаем фундамент 1,5х1,5=2,25 м², что больше предварительного минимума 0,72 м².

Расчёт максимального и минимального краевого давления

Максимальное и минимальное краевое давление находим по формуле 5.11 СП 22.13330.2016

Где N=21,3т=213 кН вертикальная нагрузка от колонны в кН;

Аф=2,25 м² – площадь фундамента, м²;

γmt – средневзвешенное значение удельных весов тела фундамента, грунтов и полов, принимаемое 20 кН/м³;

d=2 – глубина заложения фундамента, м;

M-момент от равнодействующей всех нагрузок, действующий по подошве фундамента в кН*м, находим по формуле:

W – момент сопротивления подошвы фундамента, м³. Для прямоугольного сечения находится по формуле W=bl²/6 где в нашем случае b – это сторона подошвы фундамента вдоль буквенной оси, l – длина стороны подошвы фундамента вдоль цифровой оси (см. картинку ниже).

Т.к. предварительно мы приняли фундамент с размерами 1,5х1,5 м, то

W= bl²/6=1.5*1.5²/6=0.5625 м³

При действии вертикальной нагрузки на фундамент совместно с изгибающим моментом у нас может быть 3 варианта эпюр давления на грунты:

  1. Треугольная с отрывом края фундамента

Нельзя допускать, чтобы происходил отрыв фундамента, т.е. Pmin всегда должен быть ≥0.

В нашем случае Pmin 0,5 1,1 1,0 1,0 Примечания

1 К сооружениям с жесткой конструктивной схемой относят сооружения, конструкции которых специально приспособлены к восприятию усилий от деформации оснований, в том числе за счет мероприятий, указанных в 5.9.

2 Для зданий с гибкой конструктивной схемой значение коэффициента γс2 принимают равным единице.

3 При промежуточных значениях L/H коэффициент γс2 определяют интерполяцией.

4 Для рыхлых песков γс1 и γс2 , принимают равными единице.

k=1 (п.5.6.7 СП 22.13330.2016 коэффициент, принимаемый равным единице, если прочностные характеристики грунта (φII и СII ) определены непосредственными испытаниями, и k=1,1, если они приняты по таблицам приложения А).

My=1,68 (таблица 5.5 СП 22.13330.2016)

Mq=7,71 (таблица 5.5 СП 22.13330.2016)

Mc=9,58 (таблица 5.5 СП 22.13330.2016)

Тут хочу обратить внимание, несмотря на то, что мы опираемся на грунт ИГЭ-3, грунт ИГЭ-2 имеет более низкие прочностные характеристики и он заложен ниже грунта ИГЭ-3, поэтому мы принимаем считаем несущую способность основания по ИГЭ-2.

Таблица 5.5 СП 22.13330.2016

Угол внутреннего трения φII, град. Коэффициенты
My Mq Mc
0 0 1,00 3,14
1 0,01 1,06 3,23
2 0,03 1,12 3,32
3 0,04 1,18 3,41
4 0,06 1,25 3,51
5 0,08 1,32 3,61
6 0,10 1,39 3,71
7 0,12 1,47 3,82
8 0,14 1,55 3,93
9 0,16 1,64 4,05
10 0,18 1,73 4,17
11 0,21 1,83 4,29
12 0,23 1,94 4,42
13 0,26 2,05 4,55
14 0,29 2,17 4,69
15 0,32 2,30 4,84
16 0,36 2,43 4,99
17 0,39 2,57 5,15
18 0,43 2,73 5,31
19 0,47 2,89 5,48
20 0,51 3,06 5,66
21 0,56 3,24 5,84
22 0,61 3,44 6,04
23 0,66 3,65 6,24
24 0,72 3,87 6,45
25 0,78 4,11 6,67
26 0,84 4,37 6,90
27 0,91 4,64 7,14
28 0,98 4,93 7,40
29 1,06 5,25 7,67
30 1,15 5,59 7,95
31 1,24 5,95 8,24
32 1,34 6,34 8,55
33 1,44 6,76 8,88
34 1,55 7,22 9,22
35 1,68 7,71 9,58
36 1,81 8,24 9,97
37 1,95 8,81 10,37
38 2,11 9,44 10,80
39 2,28 10,11 11,25
40 2,46 10,85 11,73
41 2,66 11,64 12,24
42 2,88 12,51 12,79
43 3,12 13,46 13,37
44 3,38 14,50 13,98
45 3,66 15,64 14,64

kz=1 (п.5.6.7 СП 22.13330.2016 коэффициент, принимаемый равным единице при b 150 кПа, поэтому увеличивать размеры фундамента нет необходимости.

Следовательно, фундамент удовлетворяет требованиям по несущей способности основания.

После этого нужно сконструировать фундамент, назначить размеры, арматуру, бетон, что обязательно рассмотрю в следующих статьях.

Расчётную программу в Excel можно скачать по ссылке

This article has 3 Comments

Для всех типов фундаментов для ввода нагрузок на основания применяются результаты статического расчета от действия какого-либо загружения или комбинации загружений. В качестве альтернативы возможен и «ручной» ввод в соответствии с расчетной схемой.

Большое спасибо за программку! Очень сократили время расчетов!

Источник

Оцените статью