Минимальное расчетное сопротивление грунта для фундамента

Расчетное сопротивление грунта основания

Определение расчетного сопротивления грунта онлайн и с помощью таблиц СНиП. Несущая способность глинистых и песчаных грунтов.

Расчетное сопротивление грунта (R) – это один из наиболее важных параметров при строительстве фундамента, так как позволяет определить предельно возможные значения массы вышележащей конструкции, которую способна выдержать подстилающая поверхность.

В случае превышения допустимых значений показателя несущей способности грунта, под подошвой фундамента формируются области предельного равновесия. Другими словами, грунт расположенный снизу не выдерживает нагрузки и стремится в сторону наименьшего сопротивления, то есть на поверхность. Последствия выражаются в виде бугров и валов, расположенных рядом с границами фундамента.

Самой главной опасностью в данном случае, является нарушение однородности подстилающего грунта. Нагрузка от конструкции начинается распределяться неравномерно, фундамент теряет свою устойчивость, активизируются процессы деформации и в скором времени начинают появляться трещины.

Расчет несущей способности грунта

Определение несущей способности грунта – это достаточно трудоемкий процесс, который можно выполнить подручными средствами (вручную/онлайн) или же воспользоваться услугами геолого-геодезических агенств. Если вы хотите сэкономить и выполнить расчет самостоятельно – KALK.PRO поможет вам в этом нелегком деле!

Мы предлагаем вам воспользоваться нашим удобным онлайн-калькулятором расчета сопротивления грунта на сжатие/сдвиг. По окончанию вычисления вы получите значение расчетного сопротивления в четырех разных единицах измерения (кПа, kH/m 2 , тс/м 2 , кгс/см 2 ). Для того чтобы получить результат расчета, вам необходимо заполнить несколько полей:

  • Тип расчета. На основании лабораторных испытаний или при неизвестных характеристиках грунта.
  • Характеристики грунта. Тип, коэффициент пористости и показатель текучести, а также осредненное расчетное значение удельного веса грунтов.
  • Параметры фундамента. Ширина основания и глубина заложения.
Читайте также:  Опалубок для фундамента своими руками

Последние две характеристики грунта определяются только для глинистых грунтов.

Калькулятор расчетного сопротивления грунта основания

Для начала нам необходимо выбрать тип расчета. Первый вариант подразумевает, что вы получите отдадите образец грунта в специализированную лабораторию на исследование. Данный способ занимает большое количество времени и средств. Поэтому если у вас не сложный участок и вы уверены, что сможете сделать все своими силами, мы предлагаем воспользоваться вторым вариантом и выполнить расчет на основании табличных данных.

Классификация грунтов

Следующий этап работ связан с определением типа грунта. Согласно СНиП 11-15—74, все виды грунтов делятся на две основные группы:

  • скальные;
  • нескальные.

Первые, представлены горными породами, метаморфического или гранитного происхождения. Встречаются в горных областях и в местах выхода основания тектонической платформы на поверхность (щиты). В нашей стране это территория Карелии и Мурманской области. Горные системы Урала, Кавказа, Алтая, Камчатки, плоскогорья Сибири и Дальнего Востока.

Сопротивление скальных грунтов настолько высоко, что вы можете не производить никаких предварительных расчетов.

Нескальные грунты встречаются повсеместно на равнинах. Они подразделяются на несколько видов, а те в свою очередь на фракции:

  • Пески (мелкие, средние, крупные…);
  • Супеси (легкие, тяжелые);
  • Суглинки (легкие, средние, тяжелые);
  • Глины (легкие, тяжелые…).

Как определить тип грунта самостоятельно?

Существует простой дедовский способ определения типа грунта, которым пользовались ваши родители и родители ваших родителей – он заключается в выявлении физико-механических свойств породы.

Для этого необходимо провести отбор проб почвы в крайних точках и в середине участка. Выкопайте ямы на глубину, предполагаемого уровня заложения фундамента и возьмите образецы грунта с каждой контрольной точки.

Подготовьте рабочую поверхность, для того чтобы провести научный эксперимент.

  • Намочите почву до состояния, когда из нее можно будет сформировать шар.
  • Попробуйте раскатать шар в продолговатое тело (шнур).
    • Если у вас не получилось этого сделать, то перед вами песчаная почва.
    • Если немного схватывается, но все равно разрушается – это супесь.
    • Если шнур удается свернуть в кольцо, но наблюдаются разрывы/трещины – это суглинок.
    • Если кольцо замкнулось, а тело осталось невредимым – это глина.

Для наглядности можно посмотреть иллюстрацию ниже:

Если вам не удалось ничего сделать из образца грунта, то для вас расчет несущей способности песчаного грунта закончился. Выберите соответствующий пункт в калькуляторе и нажмите «Рассчитать«.

Несущая способность грунта – Таблица СНиП

Для определения несущей способности глинистых грунтов, нам необходимо получить еще два коэффициента – показатель текучести грунта (IL) и коэффициент пористости (е). Первый показатель можно достаточно легко определить на глаз, если почва откровенно сырая и вязкая – выбирайте IL = 1, если сухая и грубая – IL = 0. Второй коэффициент можно получить только в таблицах из СНиП. Так как все данные находятся в открытом доступе, для вашего удобства мы скопировали таблицы расчетного сопротивления грунта из СП 22.13330.2011.

Несущая способность глинистых грунтов

Глинистые грунты

Коэффициент пористости е

Значения R0, кПа, при показателе текучести грунта

Источник

расчетное сопротивление грунта и другие вопросы по основаниям

Страница 1 из 6 1 2 3 > 6 »

Я хочу разобраться в методике расчета расчетного сопротивления грунта.
Нашел в даунлоде несколько программ для этого. К примеру, возьмем RSoil.
Расчет идет по СНиП 2.02.01-83.
Хочу проверить правильно ли я все делаю.
Беру пример геологии.

Грунт — крупнообломочный
Плотность — 2 г/см3
Удельное сцепление (C) — 1 кПа
Угол внутреннего трения (fi) — 38 градусов
Усредненная плотность грунта выше подошву фундамента — 1,9 тс/м3
Условное расчетное сопротивление грунта (R0) — 0,3 МПа

Для проверки решил перерассчитать условное расчетное сопротивление грунта.
По СНиП 2.02.01—83* значения R0 (см. табл. 8.5—8.8) относятся к фундаментам шириной b0 = 1 м и глубиной заложения d0 = 2 м.
Выставляю все параметры в программе, на выходе получаю
R0 = 0.57 МПа, как видите результат отличается от значения указанного в геологии. Пытался взять для примера другое заключение геолога, но опять результаты расходятся.

Я что-то не так делаю или геолог выдает неверные значения?
Скриншот программы прилагаю.

Если у вас есть под рукой геологическое заключение, прошу провести подобный расчет R0, интересно только у меня несходимость или нет.
Для справки RSoil брал тут: http://dwg.ru/dnl/8046

Заранее спасибо откликнувшимся.

26.12.2011, 19:36 #2

26.12.2011, 20:58 #3

26.12.2011, 21:38 #4

По СНиП 2.02.01—83* значения R0 (см. табл. 8.5—8.8) относятся к фундаментам шириной b0 = 1 м и глубиной заложения d0 = 2 м.
А сцепление грунта точно равно 1 Мпа? Может быть, 1 кПа?

26.12.2011, 22:02 #5

26.12.2011, 22:05 #6

26.12.2011, 23:01 #7

26.12.2011, 23:15 1 | #8

Основания и фундаменты, геотехнологии

расчетное сопротивление грунта
Здравствуйте.

Я хочу разобраться в методике расчета расчетного сопротивления грунта.
Нашел в даунлоде несколько программ для этого. К примеру, возьмем RSoil.
Расчет идет по СНиП 2.02.01-83.
Хочу проверить правильно ли я все делаю.
Беру пример геологии.

Грунт — крупнообломочный
Плотность — 2 г/см3
Удельное сцепление (C) — 1 кПа
Угол внутреннего трения (fi) — 38 градусов
Усредненная плотность грунта выше подошву фундамента — 1,9 тс/м3
Условное расчетное сопротивление грунта (R0) — 0,3 МПа

Для проверки решил перерассчитать условное расчетное сопротивление грунта.
По СНиП 2.02.01—83* значения R0 (см. табл. 8.5—8.8) относятся к фундаментам шириной b0 = 1 м и глубиной заложения d0 = 2 м.
Выставляю все параметры в программе, на выходе получаю
R0 = 0.57 МПа, как видите результат отличается от значения указанного в геологии. Пытался взять для примера другое заключение геолога, но опять результаты расходятся.

Я что-то не так делаю или геолог выдает неверные значения?
Скриншот программы прилагаю.

Если у вас есть под рукой геологическое заключение, прошу провести подобный расчет R0, интересно только у меня несходимость или нет.
Для справки RSoil брал тут: http://dwg.ru/dnl/8046

Заранее спасибо откликнувшимся.

27.12.2011, 01:16 #9

alektich
Спасибо за информацию.
Тогда для меня странно что R0 по таблице приложения В и по точной формуле могут отличатся на 90%. По моему такая разница чересчур даже для приближенной методики.
Завтра еще раз посмотрю геологию, может R0 в геологии взято занижено.

Добавлено
Ну вот я снова в оффисе.
Геология на другом языке, попытаюсь перевести полное название грунта, возможно перевод будет не совсем правильный
щебнисто-мелкощебнистый грунт, крупнообломочный, из вулканических и вулканическоосадочных пород. С песчаным и местами суглинистым заполнителем до 20%.
Открываю таблицы приложения В.

Таблица В.1 — Расчетные сопротивления R0 крупнообломочных грунтов

Крупнообломочные грунты———————————————Значения R0, кПа
Галечниковые (щебенистые) с заполнителем:песчаным——-600
глинистым при показателе текучести:
IL 0,5————————————————————————450
0,5 Последний раз редактировалось avonder, 27.12.2011 в 09:52 .

Источник

5.5.2. Расчетное сопротивление грунтов основания

Зависимость «нагрузка-осадка» для фундаментов мелкого заложения можно считать линейной только до определенного предела давления на основание (рис. 5.22). В качестве такого предела принимается расчетное сопротивление грунтов основания R [4]. При расчете деформаций основания с использованием указанных в п. 5.5.1 расчетных схем среднее давление под подошвой фундамента (от нагрузок для расчета оснований по деформациям) не должно превышать расчетного сопротивления грунта основания R , кПа, определяемого по формуле

где γc1 и γc2 — коэффициенты условий работы, принимаемые по табл. 5.11; k — коэффициент, принимаемый: k = 1, если прочностные характеристики грунта ( с и φ ) определены непосредственными испытаниями, и k = 1,1, если указанные характеристики приняты по таблицам, приведенным в гл. 1; Мγ , Мq и Мc — коэффициенты, принимаемые по табл. 5.12; kz — коэффициент, принимаемый: kz = 1 при b kz = z0/b + 0,2 при b ≥ 10 м (здесь b — ширина подошвы фундамента, м; z0 = 8 м); γII — расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента (при наличии подземных вод определяется с учетом взвешивающего действия воды), кН/м 3 ; γ´II — то же, залегающих выше подошвы; сII — расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, кПа; d1 — глубина заложения фундаментов бесподвальных сооружений или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала,’определяемая но формуле

(здесь hs — толщина слоя грунта выше подошвы фундамента со стороны подвала, м; hcf — толщина конструкции пола подвала, м; γcf — расчетное значение удельного веса материала пола подвала, кН/м 3 ); db — глубина подвала — расстояние от уровня планировки до пола подвала, м (для сооружений с подвалом шириной В ≤ 20 м и глубиной более 2 м принимается db = 2 м, при ширине подпали В > 20 и принимается d > 0).

Если d1 > d (где d — глубина заложения фундамента), то d1 принимается равным d , a db = 0.

Формула (5.29) применяется при любой форме фундаментов в плане. Если подошва фундамента имеет форму круга или правильного многоугольника площадью А , то принимается b = . Расчетные значения удельных весов грунта и материала пола подвала, входящие в формулу (5.29), допускается принимать равными их нормативным значениям (полагая коэффициенты надежности по грунту и материалу равными единице). Расчетное сопротивление грунта при соответствующем обосновании может быть увеличено, если конструкция фундамента улучшает условия его совместной работы с основанием. Для фундаментных плит с угловыми вырезами расчетное сопротивление грунта основания допускается увеличивать на 15%.

Грунты γс1 γс2 для сооружений с жесткой конструктивной схемой при отношении длины сооружения или его отсека к его высоте L/H
≥ 4 IL ≤ 0,25
0,25 IL ≤ 0,5
IL > 0,5
1,4
1,3

1,25
1,2
1,1 1,2
1,1

1,0
1,0
1,0 1,4
1,3

Примечания: 1. Жесткую конструктивную схему имеют сооружения, конструкции которых приспособлены к восприятию усилий от деформаций оснований путем применения специальных мероприятий.

2. Для сооружений с гибкой конструктивной схемой значение коэффициента γc2 принимается равным единице.

3. При промежуточных значениях L/H коэффициент γc2 определяется интерполяцией.

φII Mγ Mq Mc φII Mγ Mq Mc
0 0 0 3,14 23 0,69 3,65 6,24
1 0,01 0,06 3,23 24 0,72 3,87 6,45
2 0,03 1,12 3,32 25 0,78 4,11 6,67
3 0,04 1,18 3,41 26 0,84 4,37 6,90
4 0,06 1,25 3,51 27 0,91 4,64 7,14
5 0,08 1,32 3,61 28 0,98 4,93 7,40
6 0,10 1,39 3,71 29 1,06 5,25 7,67
7 0,12 1,47 3,82 30 1,15 6,59 7,95
8 0,14 1,55 3,93 31 1,24 5,95 8,24
9 0,16 1,64 4,05 32 1,34 6,34 8,55
10 0,18 1,73 4,17 33 1,44 6,76 8,88
11 0,21 1,83 4,29 34 1,55 7,22 9,22
12 0,23 1,94 4,42 35 1,68 7,71 9,58
13 0,26 2,05 4,55 36 1,81 8,24 9,97
14 0,29 2,17 4,69 37 1,95 8,81 10,37
15 0,32 2,30 4,84 38 2,11 9,44 10,80
16 0,36 2,43 4,99 39 2,28 10,11 11,25
17 0,39 2,57 5,15 40 2,46 10,85 11,73
18 0,43 2,73 5,31 41 2,66 11,64 12,24
19 0,47 2,89 5,48 42 2,88 12,51 12,79
20 0,51 3,06 5,66 43 3,12 13,46 13,37
21 0,56 3,24 5,84 44 3,38 14,50 13,98
22 0,61 3,44 6,04 45 3,66 15,64 14,64

Когда расчетная глубина заложения фундаментов принимается от уровня планировки подсыпкой, в проекте оснований и фундаментов должно приводиться требование о необходимости выполнения планировочной насыпи до приложения полной нагрузки на основание. Аналогичное требование должно содержаться и в отношении устройства подсыпок под полы в подвале.

Коэффициенты Mγ, Mq и Mc , входящие в формулу (5.29), получены исходя из условия, что зоны пластических деформаций под краями равномерно загруженной полосы (рис. 5.23) равны четверти ее ширины и вычисляются по следующим соотношениям:

где ψ = π/(ctgφII + φII – π/2) ; φII — расчетное значение угла внутреннего трения, рад.

При вычислении R значения характеристик φII , сII и γII принимаются для слоя грунта, находящегося под подошвой фундамента до глубины zR = 0,5 b при b zR = t + 0,1b при b ≥ 10 м (здесь t = 4 м). При наличии нескольких слоев грунта от подошвы фундамента до глубины zR принимаются средневзвешенные значения указанных характеристик. Аналогичным образом поступают и с коэффициентами γcl и γc2 .

Как видно из формулы (5.29), значение R зависит не только от физико-механических характеристик грунтов основания, но и от искомых геометрических размеров фундамента — ширины и глубины его заложения. Поэтому определение размеров фундаментов приходится вести итерационным способом, задавшись предварительно какими-то начальными размерами.

Пример 5.5. Определить расчетное сопротивление грунта основания для ленточного фундамента шириной b = 1,4 м при следующих исходных данных. Проектируемое здание — 9-этажное крупнопанельное с жесткой конструктивной схемой. Отношение длины его к высоте L/H = 1,5. Глубина заложения фундаментов от уровня планировки по конструктивным соображениям принята d = 1,7 м. Здание имеет подвал шириной В = 12 м и глубиной db = 1,2 м. Толщина слоя грунта от подошвы фундамента до пола подвала hs = 0,3 м, толщина бетонного пола подвала hсf = 0,2 м, удельный вес бетона γII = 23 кН/м 3 . Площадка сложена песками мелкими средней плотности маловлажными. Коэффициент пористости е = 0,74, удельный вес грунта ниже подошвы γII = 18 кН/м 3 , выше подошвы γ´II = 17 кН/м 3 . Нормативные значения прочностных и деформационных характеристик приняты по справочным таблицам, приведенным в гл. 1: φn = φII = 32º, сn = cII = 2 кПа, E = 28 МПа.

Решение. Для вычисления расчетного сопротивления грунта основания по формуле (5.29) принимаем: по табл. 5.11 для песка мелкого маловлажного и здания жесткой конструктивной схемы при L/H = 1,5, γс1 = 1,3 и γс2 = 1,3; по табл. 5.12 при φII = 32º Mγ = 1,34; Mq = 6,34 и Мc = 8,55. Поскольку значения прочностных характеристик грунта приняты по справочным таблицам, k = 1,1. При b = 1,4 м kz = 1.

Приведенная глубина заложения фундамента от пола подвала по формуле (5.30)

По формуле (5.29) определяем:

R = [1,34 · 1 · 1,4 · 18 + 6,34 · 0,57 · 17 + (6,34 – 1)1,2 · 17 + 8,55 · 2] = 1,54 · 221 = 340 кПа.

Предварительные размеры фундаментов назначаются по конструктивным соображениям или исходя из значений расчетного сопротивления грунтов основания R0 , приведенных в табл. 5.13. Значениями R0 допускается также пользоваться для окончательного назначения размеров фундаментов сооружений III класса, если основание сложено горизонтальными (уклон не более 0,1) выдержанными по толщине слоями грунта, сжимаемость которых не увеличивается с глубиной в пределах двойной ширины наибольшего фундамента ниже глубины его заложения.

Двойную интерполяцию при определении R0 по табл. 5.13 для пылевато-глинистых грунтов с промежуточными значениями IL и е рекомендуется выполнять по формуле [2]

где e1 и e2 — соседние значения коэффициента пористости в табл. 5.13, между которыми находится значение е для рассматриваемого грунта; R0 (1, 0) и R0 (1, 1) — значения R0 в табл. 5.13 при коэффициенте, пористости e1 , соответствующие значениям IL = 0 и IL = 1; R0 (2, 0) и R0 (2, 1) — то же, при е2 .

Грунты R0 , кПа
Крупнообломочные
Галечниковый (щебенистый) с заполнителем:
песчаным
пылевато-глинистым
Гравийный (дресвяный) с заполнителем:
песчаным
пылевато-глинистым
600
450/400

500
400/350 Значения R0 при показателе текучести IL ≤ 0,5 даны перед чертой, при 0,5 IL ≤ 0,75 — за чертой. Пески Крупные
Средней крупности
Мелкие:
маловлажные
влажные и насыщенные водой
Пылеватые:
маловлажные
влажные
насыщенные водой 600/600
500/400

300/250
200/150
160/100 Значения R0 для плотных песков даны перед чертой, для песков средней плотности — за чертой. Пылевато-глинистые Супеси с коэффициентом пористости е :
0,5
0,7
Суглинки с коэффициентом пористости е :
0,5
0,7
1,0
Глины с коэффициентом пористости e :
0,5
0,6
0,8
1,0 300/300
250/200

600/400
500/300
300/200
250/100 Значения R0 при IL = 0 даны перед чертой, при IL = 1 — за чертой. При промежуточных значениях е и IL значения R0 определяются интерполяцией.

Значения R0 в табл. 5.13 относятся к фундаментам, имеющим ширину b1 = 1 м и глубину заложения d1 = 2 м. При использовании значений R0 по табл. 5.13 для окончательного назначения размеров фундаментов расчетное сопротивление грунта основания R определяется по формулам:

где b и d — соответственно ширина и глубина заложения проектируемого фундамента, м; γ´ — удельный вес грунта, расположенного выше подошвы фундамента, кН/м 3 ; k1 — коэффициент принимаемый для крупнообломочных и песчаных грунтов (кроме пылеватых песков) k1 = 0,125, а для пылеватых песков, супесей, суглинков и глин k1 = 0,05; k2 — коэффициент, принимаемый для крупнообломочных и песчаных грунтов k2 = 2,5, для супесей и суглинков k2 = 2, а для глин k2 = l,5.

Пример 5.6. Определить расчетное сопротивление глины с коэффициентом пористости е = 0,85 и показателем текучести IL = 0,45 применительно к фундаменту шириной b = 2 м, имеющему глубину заложения d = 2,5 м. Удельный вес грунта, расположенного выше подошвы, γ´ = 17 кН/м 3 .

Решение. Пользуясь значениями R0 (см. табл. 5.13), по формуле (5.32) вычисляем:

кПа.

Далее по формуле (5.34) получаем:

кПа.

Расчетное сопротивление R основания, сложенного крупнообломочными грунтами, вычисляется по формуле (5.29) на основе результатов непосредственных определений прочностных характеристик грунтов. При отсутствии таких испытаний расчетное сопротивление определяется по характеристикам заполнителя, если его содержание превышает 40%. При меньшем содержании заполнителя значение R для крупнообломочных грунтов допускается принимать по табл. 5.13.

При искусственном уплотнении грунтов основания или устройстве грунтовых подушек расчетное сопротивление определяется исходя из задаваемых в проекте расчетных значений физико-механических характеристик уплотненных грунтов. Последние устанавливаются либо на основе исследований, либо с помощью справочных таблиц (см. гл. 1) исходя из необходимой плотности грунтов. При вычислении R влажность пылевато-глинистых грунтов рекомендуется принимать равной 1,2 ωp .

Расчетное сопротивление рыхлых песков определяется по формуле (5.29) при γc1 = γс2 = 1. Значение R следует уточнять по результатам не менее трех испытаний штампа с размерами и формой, возможно более близкими к проектируемому фундаменту, но площадью не менее 0,5 м 2 . При этом значение R принимается не более давления, при котором ожидаемая осадка фундамента равна предельной (см. далее п. 5.5.5).

При устройстве прерывистых фундаментов расчетное сопротивление основания R определяется как для исходного ленточного фундамента по формуле (5.29) с повышением значения R коэффициентом kd , принимаемым по табл. 5.14.

При необходимости увеличения нагрузок на основание существующих сооружений при их реконструкции (замене оборудования, надстройке и т.п.) расчетное сопротивление основания должно приниматься в соответствии с данными о состоянии и физико-механических свойствах грунтов основания с учетом типа и состояния фундаментов и надфундаментных конструкций сооружения, продолжительности его эксплуатации и ожидаемых дополнительных осадок при увеличении нагрузок на фундаменты. Следует также учитывать состояние и конструктивные особенности примыкающих сооружений, которые, оказавшись в пределах «осадочной воронки», могут получить повреждения.

Коэффициент пористости е и показатель текучести IL Значения kd при фундаментных плитах
прямоугольных с угловыми вырезами
е ≤ 0,5 и IL ≤ 0 1,3 1,3
е = 0,6 и IL = 0,25 1,15 1,15
e ≥ 0,7 и IL ≥ 0,5 1,0 1,15

Примечания: 1. При промежуточных значениях е и IL коэффициент kd принимается по интерполяции.

2. Для плит с угловыми вырезами коэффициент kd учитывает повышение R на 15%.

Если в пределах сжимаемой толщи основания на глубине z от подошвы фундамента расположен слой грунта меньшей прочности, чем прочность лежащих выше слоев (рис. 5.24), необходима проверка соблюдения условия

где σzp и σzg — вертикальные нормальные напряжения в грунте на глубине z от подошвы фундамента соответственно дополнительное от нагрузки на фундамент и от собственного веса грунта, кПа (см. п. 5.2); Rz — расчетное сопротивление грунта пониженной прочности на глубине z , кПа, вычисленное по формуле (5.29) для условного фундамента шириной bz , м, определяемой по выражению

здесь N — суммарная вертикальная нагрузка на основание от фундамента, кН; l и b — соответственно длина и ширина фундамента, м.

Формула (5.36) для ленточного фундамента принимает вид

где n — вертикальная нагрузка на 1 м длины фундамента, кН/м,

а для квадратного фундамента —

При действии на фундамент внецентренной нагрузки следует ограничивать краевые давления под подошвой, которые вычисляют по формулам внецентренного сжатия. Краевые давления при действии момента в направлении главных осей подошвы фундамента не должны превышать 1,2 R , а давление в угловой точке — 1,5 R . Краевые давления рекомендуется определять с учетом бокового отпора грунта, расположенного выше подошвы фундамента, а также жесткости конструкции, опирающейся на рассматриваемый фундамент.

Действующие нормы допускают увеличение до 20% расчетного сопротивления грунта основания, вычисленного по формулам (5.29), (5.33) и (5.34), если определенные расчетом деформации основания при давлении p = R не превышают 40% предельных значений (см. далее п. 5.5.5). При этом расчетные деформации, соответствующие давлению p1 = 1,2R , должны быть не более 50% предельных. В этом случае, кроме того, требуется проверка основания по несущей способности (см. далее п. 5.6).

Сорочан Е.А. Основания, фундаменты и подземные сооружения

Источник

Оцените статью