Напряженное состояние под ленточным фундаментом

Методы усиления ленточного фундамента, технология укрепления и диагностика проблем

28.10.2018 2,652 Просмотров

Основными достоинствами ленточного фундамента являются высокая несущая способность, прочность, устойчивость ко всем нагрузкам при минимальном количестве строительных материалов.

Такое сочетание качеств по праву делает ленту лидером среди всех остальных видов опорных конструкций.

При этом, лента постоянно подвергается разнонаправленным нагрузкам со стороны грунта и воздействиям от веси постройки, снеговым, ветровым нагрузкам и т.д.

Нередко возникают ситуации, когда прочность ленты оказывается на пределе, особенно при появлении сезонных подвижек грунта.

Подобные случаи вызывают необходимость усиления ленты, о котором надо говорить подробно.

Причины разрушения ленточного фундамента

Ленточный фундамент постоянно испытывает разрушающие воздействия.

В их число входят:

  • Морозное пучение грунта.
  • Оседания почвы.
  • Строительные или земляные работы, ведущиеся поблизости.
  • Сезонные подвижки грунта.
  • Наводнения, изменения уровня грунтовых вод.
  • Наличие уклона.

Кроме того, отрицательные последствия способны вызывать:

  • Низкое качество строительных материалов.
  • Несоблюдение технологических требований во время строительства.
  • Изменение веса постройки, вызванное строительством дополнительного этажа или иными причинами.
  • Нарушения правил эксплуатации дома.

Перечисленные воздействия могут возникать как по одиночке, так и совокупно, что создает чрезвычайно сложные условия эксплуатации фундамента.

Бетон со временем начинает терять свою прочность, а дополнительные напряжения многократно ускоряют разрушительные процессы. Решением проблемы может стать усиление ленточного фундамента.

Когда требуется усиление и что это?

Необходимость усиления фундамента возникает в разных ситуациях:

  • Когда планируется строительство дополнительного этажа, пристройки, или иное изменение размера дома.
  • При появлении на стенах или фундаментной ленте трещин.
  • Если нарушена гидроизоляция ленты, вызвавшая осыпание бетона.
  • Механические повреждения ленты.
  • Подъем уровня грунтовых вод, разрушающих ленту.
  • Агрессивное воздействие среды.

Все эти случаи требуют немедленного вмешательства. Усиление — это увеличение несущей способности ленточного основания путем установки добавочных элементов, увеличения сечения ленты, инъекций специальных веществ или иных мероприятий.

Выбор конкретного метода зависит от состояния ленты, причин возникновения проблемы и размеров необходимого вмешательства. В любом случае, перед началом работ необходимо тщательное обследование конструкции и принятие решения с участием опытных специалистов.

Диагностика проблемы

Диагностика — это комплекс мероприятий, направленных на получение полной информации о состоянии несущей конструкции, наличии механических повреждений, трещин или деформаций.

Производится обследование состояния подстилающего грунта, песчаной подушки и прочих элементов, воспринимающих нагрузку от веса дома.

Процедура производится поэтапно:

  • Наружный осмотр видимых частей ленты. Визуальное обнаружение повреждений ленты производится снаружи, из подвала (если есть возможность). Отыскиваются видимые признаки появления проблем с примыкающими слоями грунта — проседания, промоины и т.д.
  • Подземный осмотр. Лента окапывается по периметру, проверяется состояние траншеи, осматривается поверхность ленты и обнаруживаются все возникшие повреждения. Оценивается глубина погружения ленты и материал закладки основания.

Составляется дефектная ведомость, в которую включаются все обнаруженные повреждения. Составляется план основания, на котором отмечаются точки возникших повреждений, трещины, деформированные участки.

На основании составленной документации производится принятие решения о мерах решения возникших проблем.

Во время этих работ производится месячная проверка неподвижности ленты. На поверхности устанавливаются специальные контрольные маячки, фиксируется их состояние.

Через месяц производится проверка их положения. Если изменений нет, значит, оседания ленты завершились.

Для выполнения сложных работ требуется разгрузка фундамента. Ее целью является перенос веса дома на вспомогательную опорную систему, позволяющую удалить грунт под лентой для его замены или гидроизоляции.

Как усилить ленточный фундамент

Действия, которые необходимо предпринять для усиления ленты, обусловлены размерами и причинами разрушений. В некоторых случаях бывает достаточно обновить гидроизоляцию, в других ситуациях требуется комплекс сложных технических мероприятий, производить установку дополнительных опор или расширение ленты.

Рассмотрим эти методы подробнее:

Укрепление мелкозаглубленного основания бетонной рубашкой

Бетонная рубашка — это усиливающая бетонная отливка, установленная на проблемном участке стены.

Для ее создания выполняются следующие действия:

  • Поверхность ленты обнажается, весь грунт на проблемном участке удаляется из траншеи.
  • С бетонной ленты снимается слой гидроизоляции. Поверхность материала должна быть абсолютно чистой, как после заливки.
  • Сквозь ленту сверлят поперечные отверстия, в которые вставляют арматурные стержни.
  • Вяжется арматурный каркас, который приваривается к стержням, вставленным в отверстия ленты.
  • Устанавливается опалубка.
  • Заливается бетон, выдерживается положенное время.
  • После окончания срока выдержки опалубка снимается, поверхность бетона гидроизолируется и производятся дальнейшие действия.

Размеры железобетонной рубашки зависят от величины поврежденного участка, но не меньше 1 метра.

Создание бетонной обоймы

Бетонная обойма образует дополнительный слой материала с обеих сторон ленты. Технология напоминает методику установки железобетонной рубашки, но добавочный слой заливается по обе стороны проблемного участка ленты.

Все действия производятся как изнутри, так и снаружи ленты. В результате образуется значительное утолщение фундамента, способное выдерживать высокие нагрузки.

С помощью использования свай

Методика усиления сваями достаточно сложна и разнообразна. Производится установка свай, создающих дополнительную опору для ленты. Они опираются на плотные слои грунта, прекращая оседания или увеличивая несущую способность фундамента для принятия повышенной нагрузки от пристроев или новых элементов конструкции дома.

Используются разные виды свай:

Каждый вид свай выполняет собственную функцию и применяется в отдельных ситуациях, где их использование является оптимальным вариантом решения проблемы. Так, винтовые сваи могут быть установлены вручную, максимально щадящими методами.

Вдавливаемые сваи нуждаются в использовании спецтехники, поэтому применение их для усиления ограничено.

Выносные сваи устанавливаются на некотором расстоянии от периметра старой ленты, затем сквозь нее пропускаются металлические балки, которые связываются со сваями. В результате дом оказывается как бы «подвешенным» на балках, получая дополнительную опору.

Вес постройки распределяется между старым и новым основаниями, что позволяет нести повышенные нагрузки.

При помощи отливов

Методика используется при усилении ленты из штучных элементов — кирпича или бутового камня. Отливы предназначены для выполнения функций армпояса.

Они устанавливаются на поверхности ленты с двух сторон, отжимаются с расчетом, чтобы верхняя часть не контактировала с поверхностью стены, а нижняя была максимально плотно прижата к ней.

После этого конструкция прочно фиксируется с помощью домкратов. Выкапывается траншея, образующая форму для заливки бетона. В результате вокруг ленты образуется дополнительный железобетонный слой, усиливающий несущую способность и прочность основания.

Упрочнение торкретбетоном

Торкретирование — это процесс нанесения бетона специальным способом напыления. Для этого используется специальное оборудование. Суть метода заключается в подаче под давлением сжатого воздуха сухой смеси цемента и песка, называемой торкрет-смесью.

Одновременно с подачей смеси из другого резервуара подают воду, затворяющую смесь. В результате на усиливаемой поверхности появляется слой плотного и прочного бетона, обладающего повышенными характеристиками по сравнению с обычными видами материала.

Полезное видео

В данном разделе вы можете посмотреть как происходит процесс, рассмотренный нами в статье:

Заключение

Усиление ленточного фундамента позволяет получить более устойчивую к нагрузкам и прочную опорную конструкцию, способную к принятию дополнительных нагрузок или возобновлению выполняемых функций.

Все работы с начала и до конца должны быть выполнены опытными профессионалами, никакой самостоятельной работы здесь быть не должно. Результат выполняемых работ может оказаться как положительным, так и отрицательным, поэтому все действия должны быть произведены грамотными подготовленными людьми.

Источник

Как распределяется напряжение в основании. Определение несущей способности основания

Чтобы рассчитать осадку фундамента и проверить прочность (несущую способность) основания, нужно знать распределение напряжений в основании, т. е. его напряженное состояние. Необходимо иметь сведения о распределении напряжений не только по подошве фундамента, но и ниже нее, так как осадка фундамента является следствием деформации толщи грунта, расположенной под ним. Для расчета несущей способности основания также приходится определять напряжения в грунте ниже подошвы фундамента. Без этого нельзя установить наличие и размеры областей сдвигов, проверить прочность прослойки слабого грунта и т. д.

Для теоретического определения напряжений в основании используют, как правило, решения теории упругости, полученные для линейно деформируемого однородного тела. В действительности грунт не является ни линейно деформируемым, телом, так как деформации его не прямо пропорциональны давлению, ни однородным телом, так как плотность его меняется с глубиной. Однако эти два обстоятельства не сказываются существенно на распределении напряжений в основании.

В данной главе рассматриваются не все вопросы напряженного состояния оснований, а только методика определения нормальных напряжений, действующих в грунте по горизонтальным площадкам.

Распределение напряжений по подошве фундамента

В мостовом и гидротехническом строительстве, как правило, применяют жесткие фундаменты, деформациями которых можно пренебречь, поскольку они малы по сравнению с перемещениями, связанными с осадкой.

Измерения нормальных напряжений (давлений) по подошве фундамента, выполненные с помощью специальных приборов, вмонтированных на уровне подошвы, показали, что эти напряжения распределены по криволинейному закону, зависящему от формы и размеров фундамента в плане, свойств грунта, среднего давления на основание и других факторов.

Рис. 2.1. Фактическая и теоретическая эпюры нормальных напряжений по подошве фундамента

В качестве примера на рис. 2.1 сплошной линией показано фактическое распределение нормальных напряжений (эпюра нормальных напряжений) по подошве фундамента, когда нагрузка (сила N) значительно меньше несущей способности основания, а пунктиром — распределение напряжений, полученное на основе решений теории упругости.

В настоящее время, несмотря на накопленный экспериментальный материал и теоретические исследования, не представляется возможным устанавливать в каждом конкретном случае действительное распределение давлений по подошве фундамента. В связи с этим в практических расчетах исходят из прямолинейных эпюр давлений.

Рис. 2.2. Прямолинейные эпюры нормальных напряжений по подошве фундамента а — при центральном сжатии; б— при внецентренном сжатии и e W/A

Рис. 2.2. Прямолинейные эпюры нормальных напряжений по подошве фундамента а — при центральном сжатии; б— при внецентренном сжатии и e W/AПри центральном сжатии (рис. 2.2, а) напряжения Pm, кПа, по подошве принимают равномерно распределенными и равными:
Pm = N/A, (2.1)
где N — нормальная сила в сечении по подошве фундамента, кН; А — площадь подошвы фундамента, м 2 .

При внецентренном сжатии эпюру напряжений принимают в виде трапеции (рис. 2.2, б) или треугольника (рис. 2.2, в). В первом из этих случаев наибольшее ртах и наименьшее Pmin напряжения определяются выражениями:
Pmax = N/A + M/W;
Pmin = N/A – M/W (2.2)
где M — Ne — изгибающий момент в сечении по подошве фундамента, кН·м (здесь е — эксцентриситет приложения силы N, м); W — момент сопротивления площади подошвы фундамента, м 3 .

Формулы (2.2) справедливы в случаях, когда изгибающий момент действует в вертикальной плоскости, проходящей через главную центральную ось инерции подошвы фундамента.

При подошве фундамента в виде прямоугольника с размером, перпендикулярным плоскости действия момента М, b и другим размером a имеем A = ab и W = ba2/6. Подставляя выражения A и W в формулы (2.2) и учитывая, что M = Ne, получаем:
Pmax =N/ba(1+6e/a)
Pmin=N/ba(1-6e/a) (2.3)
Напряжение Pmin, кПа, вычисленное по формуле (2.2) или (2.3) при эксцентриситете e> W/A, получается отрицательным (растягивающим). Между тем в сечении по подошве фундамента таких напряжений практически быть не может. При е> W/A край подошвы фундамента, более удаленный от силы N, поднимается под действием этой силы над грунтом. На некотором участке подошвы фундамента (со стороны этого края) контакт между фундаментом и грунтом нарушается (происходит так называемое отлипание фундамента от грунта), а потому эпюра напряжений P имеет вид треугольника (см. рис. 2.2, в). Этого обстоятельства формулы (2.2) и (2.3) не учитывают, поэтому ими нельзя пользоваться при е> W/A.

Формулы для определения размера а1, м, части подошвы, по которой сохраняется контакт фундамента с грунтом, и наибольшего напряжения Pmax, кПа (см. рис. 2.2, в), можно получить, если учесть, что напряжения P должны уравновесить силу N, кН, действующую на расстоянии с от ближайшего к этой силе края подошвы фундамента.
Отсюда вытекают два условия: 1) центр тяжести эпюры напряжений P расположен на линии действия силы N; 2) объем эпюры равен величине этой силы. Из первого условия при прямоугольной подошве фундамента следует
А1=3с, (2.4)
а из второго
(Pmax а1/2)b = N. (2.5)
Из формул (2.4) и (2.5) получаем
Pmax =2N/(3cb). (2.6)
Итак, при эксцентриситете е> W/A = a/6 наибольшее давление по прямоугольной подошве фундамента Pmax следует определять по формуле (2.6).

Источник

Читайте также:  Блок строительный бетонный фундамент
Оцените статью