Одиночный фундамент под колонну

Фундамент под металлическую колонну

Равномерное распределение нагрузок в каркасных конструкциях зданий и сооружений на подстилающие грунты необходимо для устойчивости всей постройки, поэтому важно правильно рассчитать и смонтировать фундамент под колонны, обеспечивающий долговременную эксплуатацию стен и перекрытий. Колонны часто применяются в качестве нагруженных элементов при строительстве не только промышленных, но и жилых зданий и устанавливаются с такими же жесткими требованиями по надежности и допустимым отклонениям от проектного расчета, независимо от способа их производства и монтажа.

Значимые требования к фундаменту

В типовом строительстве каркасные здания возводятся только промышленного назначения. С развитием сегмента индивидуальных построек из нескольких этажей большой площади стали востребованы несущие опоры в виде колонн как в самих домах, так и в придомовых сооружениях (балконы, ограждения, навесы, гараж на несколько автомобилей).

Часто каркасная конструкция наружных стен, поддержки перекрытий выполняется в виде столбов из армированного монолита с заполнением промежутка между ними легкими газобетонными блоками. Неравномерная просадка бетонных стоек приведет к растрескиванию материала стен. Поэтому нужно ответственно подойти к правильному устройству фундамента под несущими элементами, которые изготавливаются в виде столбов.

Основным документом для такого строительства будет «Руководство по проектированию фундаментов на естественном основании под колонны зданий и сооружений промышленных предприятий».

Готовые железобетонные изделия

Читайте также:  Фок пк ленточный фундамент

При проектировании опорной части строения в расчет можно закладывать стандартные элементы заводского производства с уже известными характеристиками и монтажными петлями для быстрой установки.

Основание под колонну выбирается по результатам исследований механико-динамических характеристик залегающих грунтов. Разнообразие вариантов общей конструкции фундаментов для колонн определяется проектными особенностями, площадью и формой будущего строения.

Исходные условия

Размеры подошвы под стоящую опору выбирают, чтобы нагрузка на плоскость контакта с грунтом не оказалась выше его несущей способности. Типовые показатели для усадки каждого отдельного нагруженного элемента в фундаменте не превышали допустимых значений, указанных в нормативах.

Колонна может стоять на отдельном фундаменте или располагаться в группе, для которой имеется единое основание (ленточного или плитного типа).

Группа колонн на едином основании

Выпуски арматуры под будущие колонны в монолитной бетонной плите.

При расчете столбчатого фундамента под колонну в качестве отправного значения берется площадь подошвы 1 столба. Необходимое количество таких опор нужно принимать с запасом не меньше 50% по прочности на каждый устанавливаемый элемент.

Материалами для изготовления одиночных фундаментов служат:

  • изделия из железобетона;
  • бутовый камень;
  • кирпич;
  • наливной бетон.

К жестким видам оснований относят конструкции из монолитного марочного бетона и выполненные кладкой из кирпича.

Колонны, устанавливаемые на подготовленный фундамент, различаются по виду материала изготовления: металлические, железобетонные изделия. Каждая разновидность имеет свой способ крепления в нижней точке. Подколонники под них изготавливаются в заводских условиях (стандартного типа) или прямо на строительной площадке по месту установки (проектный расчет).

Монолитный метод самостоятельного изготовления имеет преимущество в том, что является универсальным, независимо от того, стальное или железобетонное изделие будет монтироваться сверху на основание.

Подошвы для железобетона

Несущие конструкции из колонн устанавливают на отдельно стоящие фундаменты стаканного типа, чтобы не заливать большой объем бетона в ленты или плиты. Они примут и распределят нагрузку от сооружения в самых ответственных точках. Стандартные изделия для типового строительства промышленных объектов делают на заводах в готовом для сборки виде. Они состоят из расширяющейся к низу подошвы под колонну и вставляемого в стакан столба.

Такие сборные элементы должны соответствовать ГОСТ 24476-80.

Пример готового фундамента (с различными вариантами габаритов) для колонны показан на чертеже:

Увеличение площади контакта с грунтом за счет расширяющейся опорной пятки приводит к следующим результатам:

  • повышается несущая способность колонны;
  • уменьшается нагрузка на грунт от общего веса фундаментной конструкции за счет разницы в сечении подошвы и вертикальных столбов – их Ø считается по способности выдержать здание, но не зависит от площади опоры.

Стаканы с балками

В многоэтажном строительстве допустимо выбирать такой тип опоры, если залегающие под зданием грунты непучинистые, спокойные и не склонны к просадке. Стаканы могут стоять на прочных неподвижных породах с глубоким уровнем залегания грунтовых вод.

Соединение отдельных колонн и их фундаментов в единую жесткую конструкцию ленточного типа выполняют 2 основными видами соединений:

  1. Железобетонные изделия связывают вставками балок в основания колонны с последующей заливкой цементным раствором.
  2. Стальные элементы скрепляют анкерными болтами, которые залиты в фундаментном блоке под отверстия в пятке колонны и обеспечивают прочную неподвижную фиксацию.

Если стандартные заводские изделия не удовлетворяют техническим характеристикам, заложенным в проекте сооружения, то, после проведения инженерно-геологических изысканий, допускается изготавливать стаканный фундамент под несущие колонны по месту на основе расчета по конкретным условиям строительной площадки.

Заливка фундамента по месту

Для заливки фундамента по месту установки колонны выполняют индивидуальный расчет с определением площади подошвы, веса и высоты стакана.

Нужно правильно изготовить арматурный каркас по усиленной схеме, чтобы создаваемая конструкция имела высокую степень прочности. Закладка анкерных болтов производится согласно ГОСТу 24379.1-80, отклонения допускаются в пределах ±0,02 см от проекта.

Как должно выполняться армирование подколонника под отдельно стоящую металлическую опору оценивается на этом видео:


Изготавливать фундамент под металлическую колонну необходимо по следующим требованиям стандартов:

  • использовать марочный бетон не ниже М 200;
  • предельная водонепроницаемость не выше 5% (соответствовать В2);
  • защитный слой бетона на арматурных прутках не меньше 3 см (наличие видимых участков стального каркаса запрещено);
  • трещины в застывшем монолите не могут превышать 0,1 мм.

Геометрия должна выдерживаться

Под устраиваемый фундамент устанавливают надежную опалубку, которая выдержит нагрузки при заливке жидкой массы и сохранит заданную геометрию изделия, выход стальных стержней жестко фиксируется.

Фундаменту под колонну, заливаемому по месту, проводят детальный расчет всех параметров в специализированной проектной организации или при помощи компьютерной программы, которая определяет нужные геометрические размеры каждой части и требуемое армирование подошвы и столба.

В процессе бетонирования необходимо сделать закладку специальных геодезических уровней (реперов) и высотных отметок. Они потребуются и для контроля монтажа остальных конструкций здания, и для геодезических исследований в процессе эксплуатации по выявлению осадки основания.

Установка колонны

Железобетонные столбы квадратного или круглого сечения ставятся на фрезерованные башмаки, которые выставляются по требуемой отметке геодезистами на бетонный раствор.

С такой же тщательностью выставляется заложение анкерных болтов под металлические колонны. Выступающая над бетоном часть стержня размечается заранее и фиксируется в специальном кондукторе, чтобы выдержать горизонтальный и вертикальный размер.

В некоторых разновидностях заводских столбов анкера не закладывают, а оставляют в верхней части колодец для самостоятельной установки по месту.

В каждом случае любая колонна должна ставиться на геометрически выверенное, жесткое основание согласно разработанной проектной документации. В каждом индивидуальном случае для нового сооружения необходимо привлекать специалиста, чтобы оптимизировать объем работ, финансовые затраты и избежать непоправимых ошибок.

Источник

buildingbook.ru

Информационный блог о строительстве зданий

  • Home
  • /
  • Железобетонные конструкции
  • /
  • Конструкции зданий и сооружений
  • /
  • Расчёт столбчатого фундамента под колонну при действии вертикальной нагрузки и момента в одном направлении

Расчёт столбчатого фундамента под колонну при действии вертикальной нагрузки и момента в одном направлении

В этой статье рассмотрим расчёт фундамента под колонну по 1-му предельному состоянию при нагружении фундамента вертикальной нагрузкой и горизонтальной нагрузкой с изгибающим моментом, действующими в одной плоскости.

Исходные данные

Исходными данными для расчёта фундамента будут нагрузки, приходящие на фундамент от колонны и инженерно-геологические изыскания.

В результате расчёта рамы в расчётной программе получили следующие нагрузки на фундамент:

N=21.3 т (вертикальная нагрузка)

Mx=14.8 т*м (изгибающий момент)

My=0, Qy=0 (Расчёт при действии моментов в 2-х плоскостях рассмотрю отдельно в следующих статьях)

Qx=2.8 т (поперечная нагрузка)

Хочу отметить, что лучше всего проверить 2-а расчётных сочетания:

  1. Полная ветровая, снеговая, вес конструкций, равномерно-распределённая
  2. Полная ветровая и вес конструкций

Дело в том, что одно из условий расчёта является недопущение отрыва края фундамента от земли и при отсутствии снеговой нагрузки вертикальная нагрузка будет меньше и соответственно меньше сопортивления изгибающему моменту.

Глубина сезонного промерзания – 1,79 м;

Уровень грунтовых вод 1,6 м;

Прочностные свойства грунтов определяются по инженерно-геологическим изысканиям. Для этого ищем инженерно-геологический разрез под нужный фундамент и таблицу с нормативными и расчётными характеристиками грунтов. Для расчёта по 1-му предельному состоянию (расчёту на прочность) необходимы расчётные характеристики при α=0.95 (доверительная вероятность расчётных значений), согласно п.5.3.17 СП 22.13330.2016.

ИГЭ-1 — насыпной грунт — песок разной крупности c вкл. строительного мусора до 15-20%, комки суглика, обломки ж.д. плит (в расчёте не участвует т.к. отметка низа фундамента находится ниже этого слоя грунта);

ИГЭ-2 — песок средней крупности, средней плотности, водонасыщенный: (e=0.65, ρ=1,8 т/м³, Е=30 МПа, ϕ=35°, С=1 кПа).

ИГЭ-3 — песок средней крупности, с редкими прослоями текучей супеси, суглинка, глиниcтый средней плотности, водонасыщенный: (e=0.6, ρ=1,82 т/м³, Е=35 МПа, ϕ=36°, С=1,5 кПа).

Уровень грунтовых вод 1,8 м от уровня земли.

Расчёт фундамента

Схема приложения нагрузок на фундамент выглядит следующим образом:

Глубина заложения фундамента

Глубину заложения фундамента определяем в зависимости от максимальной глубины сезонного промерзания, которая дана в отчёте по инженерно-геологическим изысканиям. В моём случае нормативная глубина сезонного промерзания равна dfn=1,79м.

Расчётная глубина сезонного промерзания вычисляется по формуле 5.4 СП 22.13330.2016

где kh — коэффициент, учитывающий влияние теплового режима сооружения, принимаемый для наружных фундаментов отапливаемых сооружений — по таблице 5.2 СП 22.13330.2016; для наружных и внутренних фундаментов неотапливаемых сооружений kh=1,1, кроме районов с отрицательной среднегодовой температурой;

В нашем случае здание неотапливаемое, поэтому

Глубина заложения фундамента должна быть не выше расчётной глубины промерзания (согласно таблице 5.3 СП 22.13330.2016). Для отапливаемых зданий допускается устраивать фундаменты внутри здания (не под наружными стенами) выше глубины промерзания, но должно быть гарантировано, что в холодное время года будет отопление здания. Если же допускается, что здание могут подвергнуть консервации или отключить отопление, тогда и внутренние фундаменты также должны быть заложены на расчётную глубину промерзания.

Предварительные размеры фундамента

Определяем предварительно площадь основания фундамента.

Предварительные размеры фундамента определяем по формуле:

N — вертикальная нагрузка от колонны, которую мы получили при расчёте каркаса здания (N=21,3 т=213 кН);

R0 – расчётное сопротивление грунта, предназначенное для предварительного расчёта приведены в Приложении Б СП 22.13330.2016 (в нашем случае Таблица Б.2 для песка средней крупности и средней плотности R0 = 400кПа, для глины и других грунтов см. другие таблицы в приложении Б);

Таблица Б.2 — Расчетные сопротивления R0 песков

Пески Значения R0, кПа, в зависимости от плотности сложения песков
плотные средней плотности
Крупные 600 500
Средней крупности 500 400
Мелкие:
маловлажные 400 300
влажные и насыщенные водой 300 200
Пылеватые:
маловлажные 300 250
влажные 200 150
насыщенные водой 150 100

ȳ — среднее значение удельного веса фундамента и грунта на его обрезах, предварительно принимаемое ȳ=20 кН/м³;

d – глубина заложения фундамента (в нашем случае d=2 м)

+20% т.к. фундамент внецентренно сжатый 0,72 м²

Размеры подошвы фундамента назначаются с шагом 0,3 м, размером не менее 1,5х1,5м (Таблица 4 Пособия по проектированию фундаментов на естественном основании)

Таблица 4 Пособия по проектированию фундаментов на естественном основании

Эскиз фундамента Модульные размеры фундамента, м, при модуле, равном 0,3
h hpl соответственно hpl подошвы подколонника
h1 h2 h3 квадратной b ´ l прямоугольной b ´ l под рядовые колонны bcf ´ lcf под колонны в температурных швах bcf ´lcf
1,5 0,3 0,3 1,5´1,5 1,5´1,8 0,6´0,6 0,6´1,8
1,8 0,6 0,3 0,3 1,8´1,8 1,8´2,1 0,6´0,9 0,9´2,1
2,1 0,9 0,3 0,3 0,3 2,1´2,1 1,8´2,4 0,9´0,9 1,2´2,1
2,4 1,2 0,3 0,3 0,6 2,4´2,4 2,1´2,7 0,9´1,2 1,5´2,1
2,7 1,5 0,3 0,6 0,6 2,7´2,7 2,4´3,0 0,9´1,5 1,8´2,1
3,0 1,8 0,6 0,6 0,6 3,0´3,0 2,7´3,3 1,2´1,2 2,1´2,1
3,6 3,6´3,6 3,0´3,6 1,2´1,5 2,1´2,4
4,2 4,2´4,2 3,3´3,9 1,2´1,8 2,1´2,7
Далее с шагом 4,8´4,8 3,6´4,2 1,2´2,1
5,4´5,4 3,9´4,5 1,2´2,4
0,3 м 4,2´4,8 1,2´2,7
или 4,5´5,1
0,6 4,8´5,4
5,1´5,7
5,4´6,0

Предварительно назначаем фундамент 1,5х1,5=2,25 м², что больше предварительного минимума 0,72 м².

Расчёт максимального и минимального краевого давления

Максимальное и минимальное краевое давление находим по формуле 5.11 СП 22.13330.2016

Где N=21,3т=213 кН вертикальная нагрузка от колонны в кН;

Аф=2,25 м² – площадь фундамента, м²;

γmt – средневзвешенное значение удельных весов тела фундамента, грунтов и полов, принимаемое 20 кН/м³;

d=2 – глубина заложения фундамента, м;

M-момент от равнодействующей всех нагрузок, действующий по подошве фундамента в кН*м, находим по формуле:

W – момент сопротивления подошвы фундамента, м³. Для прямоугольного сечения находится по формуле W=bl²/6 где в нашем случае b – это сторона подошвы фундамента вдоль буквенной оси, l – длина стороны подошвы фундамента вдоль цифровой оси (см. картинку ниже).

Т.к. предварительно мы приняли фундамент с размерами 1,5х1,5 м, то

W= bl²/6=1.5*1.5²/6=0.5625 м³

При действии вертикальной нагрузки на фундамент совместно с изгибающим моментом у нас может быть 3 варианта эпюр давления на грунты:

  1. Треугольная с отрывом края фундамента

Нельзя допускать, чтобы происходил отрыв фундамента, т.е. Pmin всегда должен быть ≥0.

В нашем случае Pmin 0,5 1,1 1,0 1,0 Примечания

1 К сооружениям с жесткой конструктивной схемой относят сооружения, конструкции которых специально приспособлены к восприятию усилий от деформации оснований, в том числе за счет мероприятий, указанных в 5.9.

2 Для зданий с гибкой конструктивной схемой значение коэффициента γс2 принимают равным единице.

3 При промежуточных значениях L/H коэффициент γс2 определяют интерполяцией.

4 Для рыхлых песков γс1 и γс2 , принимают равными единице.

k=1 (п.5.6.7 СП 22.13330.2016 коэффициент, принимаемый равным единице, если прочностные характеристики грунта (φII и СII ) определены непосредственными испытаниями, и k=1,1, если они приняты по таблицам приложения А).

My=1,68 (таблица 5.5 СП 22.13330.2016)

Mq=7,71 (таблица 5.5 СП 22.13330.2016)

Mc=9,58 (таблица 5.5 СП 22.13330.2016)

Тут хочу обратить внимание, несмотря на то, что мы опираемся на грунт ИГЭ-3, грунт ИГЭ-2 имеет более низкие прочностные характеристики и он заложен ниже грунта ИГЭ-3, поэтому мы принимаем считаем несущую способность основания по ИГЭ-2.

Таблица 5.5 СП 22.13330.2016

Угол внутреннего трения φII, град. Коэффициенты
My Mq Mc
0 0 1,00 3,14
1 0,01 1,06 3,23
2 0,03 1,12 3,32
3 0,04 1,18 3,41
4 0,06 1,25 3,51
5 0,08 1,32 3,61
6 0,10 1,39 3,71
7 0,12 1,47 3,82
8 0,14 1,55 3,93
9 0,16 1,64 4,05
10 0,18 1,73 4,17
11 0,21 1,83 4,29
12 0,23 1,94 4,42
13 0,26 2,05 4,55
14 0,29 2,17 4,69
15 0,32 2,30 4,84
16 0,36 2,43 4,99
17 0,39 2,57 5,15
18 0,43 2,73 5,31
19 0,47 2,89 5,48
20 0,51 3,06 5,66
21 0,56 3,24 5,84
22 0,61 3,44 6,04
23 0,66 3,65 6,24
24 0,72 3,87 6,45
25 0,78 4,11 6,67
26 0,84 4,37 6,90
27 0,91 4,64 7,14
28 0,98 4,93 7,40
29 1,06 5,25 7,67
30 1,15 5,59 7,95
31 1,24 5,95 8,24
32 1,34 6,34 8,55
33 1,44 6,76 8,88
34 1,55 7,22 9,22
35 1,68 7,71 9,58
36 1,81 8,24 9,97
37 1,95 8,81 10,37
38 2,11 9,44 10,80
39 2,28 10,11 11,25
40 2,46 10,85 11,73
41 2,66 11,64 12,24
42 2,88 12,51 12,79
43 3,12 13,46 13,37
44 3,38 14,50 13,98
45 3,66 15,64 14,64

kz=1 (п.5.6.7 СП 22.13330.2016 коэффициент, принимаемый равным единице при b 150 кПа, поэтому увеличивать размеры фундамента нет необходимости.

Следовательно, фундамент удовлетворяет требованиям по несущей способности основания.

После этого нужно сконструировать фундамент, назначить размеры, арматуру, бетон, что обязательно рассмотрю в следующих статьях.

Расчётную программу в Excel можно скачать по ссылке

This article has 3 Comments

Для всех типов фундаментов для ввода нагрузок на основания применяются результаты статического расчета от действия какого-либо загружения или комбинации загружений. В качестве альтернативы возможен и «ручной» ввод в соответствии с расчетной схемой.

Большое спасибо за программку! Очень сократили время расчетов!

Источник

Оцените статью