Определение свойств оснований под фундаменты

Определение свойств грунта под фундаментом

Размеры, конструкция, а значит и стоимость фундамента, полностью зависят от свойств грунта, на котором он располагается. Достаточно ли устойчивый грунт для данного типа фундамента — основной вопрос, который волнует частного застройщика.

При конструировании фундамента выполняется основное правило — нагрузка на грунт не должна превышать его прочности. Фундамент должен перераспределить вес дома таким образом, и иметь такую площадь подошвы, чтобы это правило выполнялось.

Далее ознакомимся с особенностями грунтов, основными физическими свойствами, которые влияют на выбор конструкции фундамента и др.

Какие встречаются грунты

Все грунты делятся на два больших класса:
— песчаные;
— глинистые.
Затем они подразделяются в зависимости от состава.

Песчаные грунты в зависимости от крупности частиц подразделяются на:
— гравелистые,
— крупные,
— средней крупности,
— мелкие,
— пылеватые.
Чем крупнее частицы, тем большая несущая способность песчаного грунта.
Но песчаные грунты также характеризуются и плотностью. Они подразделяются на:
— плотные;
— средней плотности;
— рыхлые.
Чем выше плотность, тем прочнее грунт.

Глинистые грунты подразделяются в зависимости от состава — соотношения в их составе песчанистых частиц и глинистых или пылевых частиц. В зависимости от этого глинистые грунты подразделяются на:
— глины (наибольшее количество глинистых и пылевых частиц);
— суглинки;
— супеси.
Чем больше в грунте глинистых частиц, тем он плотнее и тем большая у него несущая способность.

Но характеристики глинистых грунтов весьма сильно зависят от увлажненности. Чем больше влажность, тем слабее глинистые грунты. По количеству воды (по консистенции) глины и суглинки подразделяют на:
— твердые,
— полу твердые,
— туго пластичные,
— мягко пластичные,
— текуче пластичные,
— текучие.

Читайте также:  Этапы возведения фундамента для дома

Супеси по свойствам близки к пылевым пескам, содержат большое количество пылевых и очень мелких глинистых частиц. Эти грунты могут содержать большое количество воды, при этом пылевые частицы начинаю играть роль смазки между крупными частицами. При достаточном количестве воды и ее движении (наличии подземного течения) из таких грунтов получаются плывун.

Глубина промерзания и морозное пучение

Существуют специальные карты, по которым можно определить глубину промерзания грунта в каждом районе.

Те грунты, которые находятся ниже глубины промерзания, находятся в слежавшемся уплотненном состоянии. Их свойства не меняются десятками лет. Их состояние можно прогнозировать.

Грунты которые промерзают, меняют свою плотность, влажность в течении года. Находится во взрыхленном состоянии, так как замерзающая вода увеличивается в объеме на10%, соответственно происходит выпучивание (увеличение объема) замерзшего грунта. После потепления грунт постепенно оседает и уплотняется.

Поэтому глинистые грунты находящиеся выше глубины промерзания в основном относятся к рыхлым, а ниже глубины промерзания те же грунты в основном плотные.

Мелко заглубленные фундаменты должны защищаться теплоизоляцией грунта. Этим уменьшается воздействие морозного пучения грунта и увеличивается его плотность, а значит и несущая способность

Определение характеристик грунта для строительства фундамента

Зачем тратить время и деньги на геологические и лабораторные исследования грунта?
Если построить самый мощный фундамент, то в любом случае он окажется достаточно надежным.

Но затраты времени и сил на исследования и составления проектной документации оправдываются. Гораздо выгоднее выбрать конструкцию фундамента по конкретным условиям, чем закладывать кубометры лишнего железобетона.
И чем тяжелее здание, тем ощутимей выгода.

Из строительной практики известно, что можно не проводить лабораторные исследования для грунтов под вспомогательными небольшими зданиями и закладывать там заведомо более прочные фундаменты.

При лабораторных исследованиях помимо прочего определяется состав отобранных образцов грунта, пористость, текучесть, пластичность. Образцы берутся из шурфов или специальным оборудованием из скважин на разной глубине, пройденных в разных местах участка строительства.

Меры по упрочению

При строительстве фундаментов в основном производится трамбовка грунта с целью увеличения плотности и его устойчивости. Мероприятия по трамбованию родительского грунта обязательны при обустройстве полов по грунту, плитных фундаментов. При этом производится трамбовка через щебень, для создания точечных усилий и наибольшей плотности.

Но основным мероприятием по упрочению грунта является его частичная или полная замена под основанием фундамента на гравийно-песчаные подушки. Часто экономически выгодно сделать замену грунта, чем увеличивать прочность фундамента.

Наибольшая экономия вследствие замены грунта возникает на неустойчивых и весьма пучинистых грунтах. Например, известно, что на торфянистых грунтах в некоторых случаях делается частичная, или полная выторфовка.

При замене грунта на более устойчивый не только повышается несущая способность основания за счет перераспределения нагрузок на плотные слои грунта, но и значительно уменьшается воздействие пучения зимой. Толщина и другие размеры песчано-гравийной подсыпки определяются проектом для конкретных условий.

Источник

Основания и фундаменты

Силкин А.М., Фролов Н.Н.

1987 г.

размещено: 06 Декабря 2018

М.: Агропромиздат, 1987, — 284с., ил.; 2-е изд., перераб. и доп.

Изложены сведения о физических, физико-механических и физико-химических свойствах грунтов как оснований фундаментов и сооружений. Приведены основные положения и методы проектирования естественных и искусственных оснований, различного вида фундаментов и способы их устройства. Второе издание (1-е — в 1981 г.) доработано с учетом новых СНиП, ГОСТов, Стандартов СЭВ и других материалов. Для студентов высших сельскохозяйственных учебных заведений по специальности «Гидромелиорация».

Оглавление

Часть I. ОСНОВЫ ГРУНТОВЕДЕНИЯ И МЕХАНИКИ ГРУНТОВ

Глава 1. Состав и строение грунтов . 7
1. Природа и составные компоненты грунтов . 7
2. Твердые частицы грунтов . 8
3. Вода в грунтах, ее виды и свойства . 13
4. Газы в грунтах . 16
5. Структура и текстура грунтов . 17

Глава 2. Физические свойства грунтов и их показатели . 23
6. Основные показатели физических свойств грунтов . 24
7. Производные показатели физических свойств грунтов . 26

Глава 3. Физико-химические свойства грунтов и их показатели . 29
8. Консистентностъ грунтов . 29
9. Просадочность грунтов . 30
10. Набухаемость и усадочность грунтов . 33
11. Плывунность и тиксотропность грунтов . 36
12. Размягчаемость, размокаемость и растворимость грунтов . 37
13. Пучинистость грунтов . 38

Глава 4. Физико-механические свойства грунтов и их показатели . 39
14. Водопроницаемость грунтов . 40
15. Деформируемость грунтов . 43
16. Прочность грунтов . 68
17. Классификационные показатели и классификация грунтов . 80

Глава 5. Характеристика различных видов грунтов . 84
18. Скальные грунты . 85
19. Нескальные грунты . 87

Глава 6. Напряжения в грунтовом массиве . 108
20. Природные напряжения . 109
21. Напряжения от внешних нагрузок в однородном полупространстве . 111
22. Напряжения от внешних нагрузок в неоднородном полупространстве . 128
23. Напряжения в грунте по подошве нагруженных площадок — контактные напряжения . 131
24. Критические нагрузки на грунт основания . 134

Часть II. ОСНОВАНИЯ И ФУНДАМЕНТЫ

Глава 7. Основные положения проектирования оснований и фундаментов . 139
25. Виды оснований и фундаментов . 139
26. Совместные деформации сооружений и оснований . 142
27. Выбор основания, фундаментов и методов их устройства . 143
28. Основные положения проектирования оснований и фундаментов по предельным состояниям . 149

Глава 8. Фундаменты неглубокого наложения . 16З
29. Конструкции фундаментов неглубокого наложения . 163
30. Проектирование фундаментов . 167
31. Проектирование гибких железобетонных фундаментов . 165

Глава 9. Расчет естественных оснований . 166
32. Определение конечных осадок . 166
33. Расчет осадок во времени . 173
34. Определение неравномерных осадок . 175
35. Проектирование оснований по первой группе предельных состояний . 177
36. Расчет нескальных оснований гидротехнических сооружений . 183

Глава 10. Искусственные основания . 188
37. Принципы расчета искусственных оснований . 188
38. Поверхностное к глубинное уплотнение грунтов механическими способами . 190
39. Замена слабых грунтов (грунтовые подушки) . 196
40. Физико-химические методы укрепления и улучшения грунтов . 197
41. Улучшение свойств лёссовых просадочных грунтов . 202
42. Искусственные основания при строительстве на заторфованных грунтах и торфах . 207

Глава 11. Свайные фундаменты . 209
43. Виды свайных фундаментов, типы и конструкции свай . 209
44. Принципы проектирования свайных фундаментов . 216
45. Расчет свай и ростверков по первому предельному состоянию . 220
46. Определение несущей способности свай испытанием статической и динамической нагрузками . 222
47. Расчет свайных фундаментов и их оснований по второму предельному состоянию . 224
48. Особенности расчета свайных фундаментов в просадочных лёссовых грунтах . 226

Глава 12. Фундаменты глубокого заложения . 228
49. Принципы проектирования фундаментов глубокого заложения . 228
50. Опускные колодцы . 229
51. Колодцы-оболочки и буровые опоры-столбы . 232
52. Кессонные фундаменты . 236

Глава 13. Устройство котлованов под фундаменты и сооружения . 238
53. Назначение размеров котлованов и разбивка их на местности . 238
54. Крепление стенок траншей и котлованов . 240
55. Осушение котлованов . 247
56. Устройство котлованов и фундаментов на местности, покрытой водой . 249

Глава 14. Проектирование и устройство оснований и фундаментов на лёссовых просадочных грунтах . 250
57. Проектирование оснований в фундаментов зданий в промышленных сооружений на просадочных грунтах . 251
58. Методы устройства оснований в гидросооружений оросительных систем на просадочных грунтах . 257
59. Проектирование оснований гидросооружений на лёссовых просадочных грунтах . 260

Глава 15. Устройство фундаментов в особых условиях . 263
60. Основные принципы устройства фундаментов и сооружений в особых грунтовых условиях . 263
61. Устройство фундаментов зданий и гидромелиоративных сооружений на водонасыщенных биогенных грунтах . 264
62. Устройство фундаментов на вечномерзлых и набухающих грунтах . 265
63. Устройство фундаментов в других сложных грунтовых условиях . 270
64. Фундаменты при динамических нагрузках . 273

Приложение . 278
Указатель литературы . 280
Предметный указатель . 281

Источник

Лекция 4 Основания и фундаменты

Понятие об основаниях и требования к ним

Геологические породы, залегающие в верхних слоях земной коры и исполь­зуемые в строительных целях, называют грунтами. Грунты представляют собой скопление частиц различной величины, между которыми находятся поры (пу­стоты). Прочность сцепления между ча­стицами грунта во много раз меньше прочности самих частиц. Эти частицы образуют скелет грунта.

Основанием называют массив грунта, расположенный под фундаментом и воспринимающий нагрузку от здания. Основания бывают двух видов: есте­ственные и искусственные.

Естественным основанием назы­вают грунт, залегающий под фундамен­том и способный в своем природном состоянии выдержать нагрузку от возведен­ного здания.

Искусственным основанием на­зывают искусственно уплотненный или упрочненный грунт, который в природ­ном состоянии не обладает достаточной несущей способностью по глубине зало­жения фундамента.

Нагрузка, передаваемая фундаментом, вызывает в грунте основания напряжен­ное состояние и деформирует его. На рис. 4.1 показана примерная форма на­пряженного объема грунта. Как видно из рисунка, глубина и ширина напряженной зоны значительно превышают ширину фундамента.

По мере углубления ниже фундамента область распространения напряжений увеличивается до определенного значе­ния, а их абсолютная величина снижает­ся, и постепенно область распростране­ния напряжений уменьшается. На глуби­не более 6Ь грунт практически не испыты­вает напряжений.

Рис. 4.1. Напряженная зона грунта основания под

Ь — ширина фундамента, Р — нагрузка от здания,

передаваемая фундаментом на основание

Действующие нагрузки деформируют основания, вызывая осадку здания. В со­ответствии с изложенным грунты, соста­вляющие основание, должны отвечать следующим требованиям: обладать до­статочной несущей способностью, а так­же малой и равномерной сжимаемостью (большие и неравномерные осадки здания могут привести к его повреждению и да­же разрушению); не быть пучинистыми, т. е. иметь свойство увеличения объема при замерзании влаги в порах грунта (в соответствии с этим требованием выби­рают глубину заложения фундамента, ко­торая должна быть согласована с глуби­ной промерзания грунта в районе строи­тельства); не размываться и не раство­ряться грунтовыми водами, что также приводит к снижению прочности основа­ния и появлению непредусмотренных оса­док здания; не допускать просадок и оползней.

Просадки могут произойти при недо­статочной мощности слоя грунта, приня­того за основание, если под ним распола­гается грунт, имеющий меньшую прочность (более слабый грунт). Оползни грунта могут возникнуть при наклонном расположении пластов грунта, ограни­ченных крутым рельефом местности.

Главное же внимание при проектирова­нии уделяется вопросу обеспечения рав­номерности осадок. При этом необходимо, прежде всего, учитывать, что нагрузка от здания может вызвать разрушение ос­нования при его недостаточной несущей способности. С другой стороны, основа­ние может и не разрушиться, но осадка здания окажется столь неравномерной, что в стенах здания появятся трещины, а в конструкциях возникнут усилия, могу­щие привести к аварийному состоянию всего здания или его части.

Грунты оснований зданий и сооруже­ний не должны обладать свойством пол­зучести, т. е. способностью к длительной незатухающей деформации под нагруз­кой. Классическим примером этого является почти 800-летняя осадка Пизанской башни, строившейся более 200 лет (рис. 4.2).

Грунтовые воды оказывают значитель­ное влияние на структуру, физическое со­стояние и механические свойства грунтов, понижая несущую способность основа­ния.

Если же в грунте содержатся легко рас­творимые в воде вещества (например, гипс), возможно выщелачивание его, что влечет за собой увеличение пористости основания и снижение его несущей спо­собности. Для этого в необходимых слу­чаях понижают уровень грунтовых вод. Когда скорость движения грунтовых вод такова, что возможно вымывание частиц мелкозернистых грунтов, необходимо применять меры по защите основания. Для этого устраивают вокруг здания спе­циальное шпунтовое ограждение или дре­наж.

Каковы же основные виды грунтов и их свойства? Грунты разнообразны по своему составу, структуре и характеру за­легания. Принята следующая строитель­ная классификация грунтов:

Скальные — залегают в виде сплошного массива (граниты, кварциты, песчаники и т. д.) или в виде трещиноватого слоя. Они водоустойчивы, несжимаемы и при отсутствии трещин и пустот являются наиболее прочными и надежными основа­ниями. Трещиноватые слои скальных грунтов менее прочны.

Крупнообломочные — несвязные облом­ки скальных пород с преобладанием обломков размером более 2 мм (свыше 50 %). К ним можно отнести гравий, ще­бень, гальку, дресву. Эти грунты являют­ся хорошим основанием, если под ними расположен плотный слой.

Песчаные — состоят из частиц круп­ностью от 0,1 до 2 мм. В зависимости от крупности частиц пески разделяют на гравелистые, крупные, средней крупности, мелкие и пылеватые. Чем крупнее и чище пески, тем большую нагрузку может вы­держать слой основания из него. Сжимае­мость плотного песка невелика, но ско­рость уплотнения под нагрузкой значи­тельна, поэтому осадка сооружений на таких основаниях быстро прекращается. Пески не обладают свойством пластично­сти.

Частицы грунта крупностью от 0,05 до 0,005 мм называют пылеватыми. Если в песке таких частиц от 15 до 50 %, то их относят к категории пылеватых. Когда в грунте пылеватых частиц больше, чем песчаных, грунт называют пылеватым.

Глинистые — связные грунты, состоя­щие из частиц крупностью менее 0,005 мм, имеющих в основном чешуйча­тую форму. В отличие от песков глины имеют тонкие капилляры и большую удельную поверхность соприкосновения между частицами. Так как поры гли­нистых грунтов в большинстве случаев заполнены водой, то при промерзании глины происходит ее пучение. Несущая способность глинистых оснований зави­сит от влажности. Сухая глина может вы­держивать довольно большую нагрузку. Глинистые грунты делятся на глины (с содержанием глинистых частиц более 30%), суглинки (10. 30%) и супеси (З. 10%).

Лёссовые (макропористые) — глинистые грунты с содержанием большого количе­ства пылеватых частиц и наличием крупных пор (макропор) в виде верти­кальных трубочек, видимых невоору­женным глазом. Эти грунты в сухом со­стоянии обладают достаточной проч­ностью, но при увлажнении способны давать под нагрузкой большие осадки. Они относятся к просадочным грунтам и при возведении на них зданий требуют надлежащей защиты оснований от увлаж­нения. С органическими примесями (рас­тительный грунт, ил, торф, болотный торф) неоднородны по своему составу, рыхлы, обладают значительной сжимае­мостью. В качестве естественных основа­ний под здания непригодны.

Насыпные — образовавшиеся искусст­венно при засыпке оврагов, прудов, мест свалки и т. п. Обладают свойством не­равномерной сжимаемости, и в большин­стве случаев их нельзя использовать в ка­честве естественных оснований под зда­ния. В практике встречаются также намы­вные грунты, образовавшиеся в результа­те очистки рек и озер. Эти грунты называют рефулированными насыпными грунтами. Они являются хорошим осно­ванием для зданий.

Плывуны — образуются мелкими песка­ми с илистыми и глинистыми примесями, насыщенными водой. Они непригодны как естественные основания. Основания должны обеспечивать пространственную жесткость и устойчивость здания, поэто­му нормами предусмотрены допустимые величины осадок здания (80. 150 мм в за­висимости от вида здания).

Фундаменты и их конструктивные решения

Фундаменты являются важным конструк­тивным элементом здания, воспринимаю­щим нагрузку от надземных его частей и передающим ее на основание. Фунда­менты должны удовлетворять требова­ниям прочности, устойчивости, долговеч­ности, технологичности устройства и эко­номичности. Верхняя плоскость фундамента, на ко­торой располагаются надземные части здания, называют поверхностью фунда­мента или обрезом, а нижнюю его пло­скость, непосредственно соприкасающую­ся с основанием, — подошвойфундамен­та. Расстояние от спланированной поверх­ности грунта до уровня подошвы назы­вают глубиной заложения фундамента, которая должна соответствовать глубине залегания слоя основания. При этом не­обходимо учитывать глубину промерза­ния грунта (рис. 4.4). Если основание со­стоит из влажного мелкозернистого грун­та (песка мелкого или пылеватого, супе­си, суглинка или глины), то подошву фундамента нужно располагать не выше уровня промерзания грунта. На рисунке приведены изолинии нормативных глу­бин промерзания суглинистых грунтов. Глубина заложения фундаментов под внутренние стены отапливаемых зданий не зависит от глубины промерзания грун­та; ее назначают не менее 0,5 м от уров­ня земли или пола подвала. В непучинистых грунтах (крупнообло­мочных, а также песках гравелистых, крупных и средней крупности) глубина заложения фундаментов также не зависит от глубины промерзания, однако она должна быть не менее 0,5 м, считая от природного уровня грунта при планиров­ке подсыпкой, и от планировочной от­метки при планировке участка срезкой. По конструктивной схеме фундаменты могут быть: ленточные, располагаемые по всей длине стен или в виде сплошной ленты под рядами колонн (рис. 4.5, а, б); столбчатые, устраиваемые под отдельно стоящие опоры (колонны или столбы), а в ряде случаев и под стены (рис. 4.5, в, г); сплошные, представляющие собой монолитную плиту под всей площадью здания или его частью и применяемые при особо больших нагрузках на стены или отдельные опоры, а также

Рис. 4.4. Определение глубины заложения фундаментов а — схема: 1 — полотна фундамента, 2 — тело фун­дамента. 3 — отметка глубинызаложения фундаментa. 4 — отметка глубины промерзания грунта, 5 — отметка уровня грунтовых вод, б — планировочная отметка, 7 — стена, 8 — уровень пола I этажа, 9 -обрез фундамента, hф —глубина заложения фундаментa, В- ширина подошвы фундамента, в — карм нормативных глубин промерзания суглинистых грунтов

недоста­точно прочных грунтах в основании (рис. 4.5,д, г); свайные в виде отдельных по­груженных в грунт стержней для переда­чи через них на основание нагрузок от здания (рис. 4.5, ж).

По характеру работы под действием нагрузки фундаменты различают жест­кие, материал которых работает преиму­щественно на сжатие и в которых не воз­никают деформации изгиба, и гибкие, работающие преимущественно на изгиб.

Для устройства жестких фундаментов применяют кладку из природного камня неправильной формы (бутового камня или бутовой плиты), бутобетона и бето­на. Для гибких фундаментов используют в основном железобетон.

Ленточные фундаменты. По очертанию в профиле ленточный фунда­мент под стену в простейшем случае представляет собой прямоугольник (рис. 4.6, а). Его ширину устанавливают немно­го больше толщины стены, предусматри­вая с каждой стороны небольшие уступы по 50. 150 мм. Однако прямоугольное се­чение .фундамента на высоте допустимо лишь при небольших нагрузках на фунда­мент и достаточно высокой несущей спо­собности грунта.

Чаще всего для передачи давления на грунт и обеспечения его несущей способ­ности необходимо увеличивать площадь подошвы фундамента путем ее уширения. Теоретической формой сечения фунда­мента в этом случае является трапеция (рис. 4.6,6), где угол а определяет рас­пространение давления и принимается для бутовой кладки и бутобетона от 27 до 33°, для бетона — 45°. Устройство та­ких трапецеидальных фундаментов связа­но с определенными трудозатратами, по­этому практически такие фундаменты в зависимости от расчетной ширины по­дошвы выполняют прямоугольными или ступенчатой формы (рис. 4.6, в, г) с со­блюдением правила, чтобы габариты фундамента не выходили за пределы его теоретической формы. Размеры ступеней по ширине (а) принимают 20. 25 см, а по высоте (с) — соответственно 40. 50 см По способу устройства ленточные фун­даменты бывают монолитные и сборные. Монолитные фундаменты устраивают бутовые, бутобетонные, бетонные и железобетонные. На рис. 4.7 показан ленточный фундамент из бутового камня и бутобе­тона. Ширина бутовых фундаментов дол­жна быть не менее 0,6 м для кладки из рваного бута и 0,5 м — из бутовой плиты. Высота ступеней в бутовых фундаментах составляет обычно около 0,5 м, ши­рина — от 0,15 до 0,25 м. Устройство мо­нолитных бутобетонных, бетонных и же­лезобетонных фундаментов требует про­ведения опалубочных работ. Кладку бу­товых фундаментов производят на слож­ном или цементном растворе с обяза­тельной перевязкой (несовпадением) вер­тикальных швов (промежутков между камнями, заполняемых раствором).

Бутобетонные фундаменты состоят из бетона класса В5 с включением в его тол­щу (в целях экономии бетона) отдельных кусков бутового камня. Размеры камней должны быть не более 1/3 ширины фунда­мента.

Монолитные бутовые фундаменты не отвечают требованиям современного ин­дустриального строительства, а для их устройства трудно механизировать работы Бутовые и бутобетонные фунда­менты весьма трудоемкие при возведе­нии, поэтому их применяют в основном в районах, где бутовый камень является местным материалом.

Более эффективными являются бе­тонные и железобетонные фундаменты из сборных элементов заводского изготовле­ния (рис. 4.8), которые в настоящее время имеют наибольшее распространение. При их устройстве трудовые затраты на строительстве уменьшаются вдвое. Их можно возводить и в зимних условиях без устройства обогрева.

Сборные ленточные фундаменты под стены состоят из фундаментных блоков-подушек и стеновых фундаментных бло­ков. Фундаментные подушки укладывают непосредственно на основание при пес­чаных грунтах или на песчаную подго­товку толщиной 100. 150 мм, которая должна быть тщательно утрамбована.

Фундаментные бетонные блоки укладывают на растворе с обязательной перевязкой вертикальных швов, толщину которых принимают равной 20 мм (рис. 4.8, 4.9). Вертикальные колодцы, обра­зующиеся торцами блоков, тщательно заполняют раствором. Связь между блока­ми продольных и угловых стен

обеспечи­вается перевязкой блоков и закладкой в горизонтальные швы арматурных сеток из стали диаметром 6. 10 мм (рис. 4.10).

Блоки-подушки изготовляют толщиной 300 и 400 мм и шириной от 1000 до 2800 мм, а блоки-стенки — шириной 300, 400, 500 и 600 мм, высотой 580 и длиной от 780 до 2380 мм.

В практике строительства применяют также сборные фундаментные блоки, имеющие толщину 380 мм при толщине надземных стен 380, 510 и 640 мм (рис. 4.11, а). При такой конструкции проч­ность материала фундамента использует­ся полнее и в результате получается эко­номия бетона. Этой же цели соответ­ствует устройство так называемых пре­рывистых фундаментов (рис. 4.11,6), в которых блоки-подушки укладывают на расстоянии 0,3. 0,5 м друг от друга. Про­межутки между ними заполняют песком.

Строительство крупнопанельных зда­ний и зданий из объемных блоков потре­бовало разработки новых конструк­тивных решений фундаментов. На рис. 4.11, в показан фундамент из крупнораз­мерных элементов для жилого дома с по­перечными несущими стенами и подва­лом. Фундамент состоит из железобетон­ной плиты толщиной 300 мм и длиной 3,5 м и установленных на них панелей, представляющих собой сквозные безра­скосные железобетонные фермы, имею­щие толщину 240 мм и высоту, равную высоте подвального помещения. Соеди­няются элементы между собой с по­мощью сварки закладных стальных дета­лей.

При строительстве зданий на участках со значительными уклонами фундаменты стен выполняют с продольными уступа­ми (рис. 4.12). Высота уступов должна быть не более 0,5 м, а длина — не менее 1,0 м. Этим же правилом пользуются при устройстве перехода фундаментов вну­тренних стен к фундаментам наружных при разных глубинах их заложения.

Если необходимо обеспечить независи­мую осадку двух смежных участков зда­ния (например, при их разной этажно­сти), то при устройстве ленточных моно­литных фундаментов в их теле устраи­вают сквозные, разъединяющие фундамент зазоры. Для этого в зазоры вста­вляют доски, обернутые толем. В под­вальных зданиях доски с наружной сто­роны вынимают и швы в этих местах заполняют битумом. Если фундаменты сборные, то для обеспечения необходимо­го зазора блоки укладывают так, чтобы вертикальные швы совпадали.

В местах пропуска различных трубо­проводов (водопровода, канализации и др.) в монолитных фундаментах зара­нее предусматривают соответствующие отверстия, а в сборных между блоками -необходимые зазоры с последующей их заделкой.

Столбчатые фундаменты.

При небольших нагрузках на фундамент, когда давление на основание меньше нор­мативного, непрерывные ленточные фун­даменты под стены малоэтажных домов без подвалов целесообразно заменять столбчатыми. Фундаментные столбы мо­гут быть бутовыми, бутобетонными, бе­тонными и железобетонными (рис. 4.13, а). Расстояние между осями фунда­ментных столбов принимают 2,5. 3,0 м, а если грунты прочные, то это расстояние может составлять 6 м. Столбы распола­гают обязательно под углами здания, в местах пересечения и примыкания стен и под простенками. Сечение столбчатых фундаментов во всех случаях должно быть не менее: бутовых и бутобетонных — 0,6 х 0,6 м; бетонных — 0,4 х 0,4 м.

Столбчатые фундаменты под стены возводят также в зданиях большой этаж­ности при значительной глубине заложения фундаментов (4. 5 м), когда устрой­ство ленточного фундамента нецелесо­образно из-за большого расхода строи­тельных материалов. Столбы перекры­вают железобетонными фундаментными балками. Для предохранения их от сил пучения грунта, а также для свободной их осадки (при осадке здания) под ними делают песчаную подсыпку толщиной

Источник

Оцените статью