Определить размеры подошвы фундамента рассчитать рабочую арматуру если

Онлайн калькулятор расчета размеров, арматуры и количества бетона монолитного ленточного фундамента

Информация по назначению калькулятора

Онлайн калькулятор монолитного ленточного фундамента предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента. Для определения подходящего типа фундамента, обязательно обратитесь к специалистам.

Л енточный фундамент представляет собой монолитную замкнутую железобетонную полосу, проходящую под каждой несущей стеной строения, распределяя тем самым нагрузку по всей длине ленты. Предотвращает проседание и изменение формы постройки вследствие действия сил выпучивания почвы. Основные нагрузки сконцентрированы на углах. Является самым популярным видом среди других фундаментов при строительстве частных домов, так как имеет лучшее соотношение стоимости и необходимых характеристик.

С уществует несколько видов ленточных фундаментов, такие как монолитный и сборный, мелкозаглубленный и глубокозаглубленный. Выбор зависит от характеристик почвы, предполагаемой нагрузки и других параметров, которые необходимо рассматривать в каждом случае индивидуально. Подходит практически для всех типов построек и может применяться при устройстве цокольных этажей и подвалов.

П роектирование фундамента необходимо осуществлять особенно тщательно, так как в случает его деформации, это отразится на всей постройке, а исправление ошибок является очень сложной и дорогостоящей процедурой.

Читайте также:  Сколько обходится строительство фундамента дома

Д алее представлен полный список выполняемых расчетов с кратким описанием каждого пункта.

Источник

Как самостоятельно провести расчёт арматуры для фундамента?

Мероприятиям по возведению любого здания предшествуют проектные работы, в процессе которых определяется тип фундаментной базы и необходимое количество материалов для ее сооружения. Важной частью фундамента является арматурный каркас. Он повышает прочность основания, демпфирует растягивающие усилия и изгибающие нагрузки, а также предотвращает образование трещин. Для выполнения работ необходимо понимать, сколько арматуры нужно для армирования ленточного фундамента, а также для столбчатого и плитного основания. Разберемся с особенностями вычислений.

Расход арматуры на армирование ленточного фундамента

Готовимся выполнить расчет количества арматуры для фундамента – важные моменты

Планируя постройку частного дома, следует обратить особое внимание на конструкцию арматурной решетки, воспринимающую значительные нагрузки на фундамент. Квалифицированно разработанная схема силовой решетки и применение оптимального сечения арматуры позволяет обеспечить требуемый запас прочности фундаментной базы, а также ее продолжительный ресурс использования.

Самостоятельно рассчитать арматуру на фундамент можно различными способами:

  • с использованием программных средств и онлайн-калькуляторов, которые выполняют расчет арматуры после введения рабочих параметров;
  • выполняя вычисления вручную на основании информации о конструктивных особенностях фундамента, величине усилий и параметрам решетки.

Фундаментная основа, воспринимает нагрузку от массы здания и равномерно распределяет ее на опорную поверхность почвы.

Возведение зданий осуществляется на различных типах оснований:

  • ленточных;
  • плитных;
  • столбчатых.

Расчет арматуры для ленточного фундамента

До начала вычислений следует разобраться с конструкцией силового каркаса, который состоит из следующих элементов:

  • вертикальных и поперечных стержней, между которыми выдержан равный интервал;
  • вязальной проволоки, соединяющей продольно расположенные перемычки и вертикальные прутки;
  • муфт, обеспечивающих прочное соединение и удлинение арматурных прутков.

Для каждого вида основания применяется своя схема армирования фундамента, которая зависит от следующих факторов:

  • характеристик почвы;
  • габаритов здания;
  • конструктивных особенностей строения;
  • действующих нагрузок.

Применяется арматура, имеющая ребристую поверхность, которая отличается:

  • размером сечения;
  • классом;
  • уровнем воспринимаемых нагрузок;
  • расположением в силовой решетке;
  • стоимостью.

Укладка арматуры в ленточный фундамент

Для различных фундаментов на основании вычислений определяются следующие сведения:

  • количество арматуры для фундамента;
  • сортамент вертикальных и поперечных прутков;
  • общая масса арматурного каркаса;
  • методы фиксации стальных стержней в силовой конструкции;
  • технология сборки несущей решетки;
  • шаг обвязки арматурных элементов.

Важно правильно выполнить расчет. Арматура для фундамента в этом случае обеспечит необходимый запас прочности. Рассмотрим, какие необходимы исходные данные для расчетов, а также изучим методику выполнения вычислений для различных типов фундаментов.

Расчет количества арматуры для ленточного фундамента

Основание ленточного типа обеспечивает повышенную устойчивость строений на различных почвах. Конструкция представляет собой бетонную ленту, повторяющую контур здания и расположенную под капитальными стенами. Усиление стальной арматурой повышает прочностные характеристики бетонной основы и положительно влияет на ее долговечность. Для сооружения пространственной решетки можно использовать арматуру диаметром 10 мм.

Исходные данные для выполнения расчетов:

  • длина и ширина фундаментной базы;
  • сечение железобетонной ленты;
  • интервал между каркасными элементами;
  • общее количество обвязочных поясов;
  • размер ячеек силовой решетки.

Сколько арматуры нужно для фундамента

Рассмотрим порядок вычислений:

  1. Рассчитайте общую длину ленточного контура.
  2. Вычислите количество элементов в поясах.
  3. Определите метраж горизонтальных стержней.
  4. Вычислите потребность в вертикальных прутках.
  5. Рассчитайте длину поперечных перемычек.
  6. Сложите полученный метраж.

Зная общее количество стыковых участков, можно вычислить потребность в вязальной проволоке.

Расчет количества арматуры на фундамент плитного типа

Фундамент плитной конструкции применяется для строительства жилых зданий на пучинистых грунтах. Для обеспечения прочностных характеристик применяются арматурные стержни диаметром 10–12 мм. При повышенной массе строений диаметр прутков следует увеличить до 1,4–1,6 см.

Рассчитать количество арматуры для фундамента плитной конструкции можно, используя следующую информацию:

  • пространственный каркас из арматуры сооружается в двух уровнях;
  • соединение стержней выполняется в виде квадратных ячеек со стороной 15–20 см;
  • обвязка выполняется отожженной проволокой в каждой точке соединения.

Схема армирования монолитной плиты фундамента

Для определения потребности в арматуре выполните следующие операции:

  1. Определите количество горизонтальных прутков в каждом ярусе.
  2. Вычислите общий метраж арматурных стержней, формирующих ячейки.
  3. Прибавьте суммарную длину вертикальных опор, объединяющих ярусы.

Сложив полученные значения, получим общую потребность в арматуре. Зная количество стыков, несложно определить необходимый объем стальной проволоки.

Как рассчитать арматуру на фундамент столбчатой конструкции

Основание столбчатого типа широко применяется для строительства различных зданий. Оно состоит из железобетонных опор квадратного и круглого сечения, установленных в углах строения, а также в точках пересечения капитальных стен и внутренних перегородок. Для повышения прочности опорных элементов применяются ребристые стержни сечением 1–1,2 см.

Рассчитать количество арматуры на фундамент столбчатого типа несложно, учитывая следующие данные:

  • каркас опорного элемента квадратного профиля формируется из 4 стержней;
  • решетка железобетонной опоры круглого сечения выполняется из трех прутьев;
  • длина элементов усиления соответствует размерам опорной колонны;
  • поперечная обвязка каркаса опорной колонны производится с шагом 0,4–0,5 м.

Алгоритм расчета:

  1. Определите длину вертикальных стержней в одной опоре.
  2. Вычислите метраж элементов поперечной обвязки одного каркаса.
  3. Рассчитайте общую длину, сложив полученные значения.

Умножив результат на количество опор, получим общую длину арматуры.

Как посчитать арматуру для фундамента – пример вычислений

В качестве примера рассмотрим, сколько нужно арматуры для фундамента 10х10, сформированного в виде монолитной железобетонной ленты.

Для выполнения вычислений используем следующую информацию:

  • ширина основы 60 см, позволяет уложить в каждом поясе по 3 горизонтальных стержня;
  • выполняется 2 пояса усиления, соединенные вертикальными прутками с интервалом 1 м.
  • для здания 10х10 м и глубиной основы 0,8 м используется арматура диаметром 10 мм.

Расход арматуры для ленточного фундамента

Алгоритм расчета:

  1. Определяем периметр фундаментной основы здания, сложив длину стен – (10+10)х2=40 м.
  2. Вычисляем количество горизонтальных элементов в одном поясе, умножив периметр на количество стержней в одном ярусе – 40х3=120 м.
  3. Общая длина продольных прутков определяется умножением полученного значения на количество ярусов 120х2=240 м.
  4. Рассчитываем количество вертикальных элементов, установленных по 10 пар на каждую сторону 10х2х4=80 шт.
  5. Суммарная длина вертикальных стержней составит 80х0,8=64 м.
  6. Определяем длину перемычек размером по 0,6 м каждая, установленных на двух поясах (по 20 на сторону) – 10х2х4х0,6=48 м.
  7. Сложив длину арматурных стержней, получим общий метраж 240+64+48=352 м.

Определить длину стальной проволоки несложно. Количество соединений, умноженное на длину одного куска проволоки, равную 20–30 см, даст искомый результат.

Подводим итоги – насколько необходим расчет арматуры на фундамент

Планируя строительство дома, бани или дачного строения, несложно определить потребность в арматуре своими руками. Пошаговые инструкции позволят на калькуляторе рассчитать метраж стержней для изготовления арматурной решетки, усиливающей основу здания. Зная, как рассчитать арматуру, можно самостоятельно выполнить вычисления, не прибегая к помощи сторонних специалистов. Правильно выполненные расчеты обеспечат прочность фундаментной основы, устойчивость здания, а также длительный ресурс эксплуатации.

Источник

Расчет столбчатых фундаментов металлического каркаса

Уважаемые коллеги, продолжаем рассматривать небольшие примеры использования ФОК Комплекс для расчета фундаментов. Сегодня мы рассмотрим примеры расчета столбчатых фундаментов металлического каркаса. В начале произведем ручной расчет 2-х фундаментов с дальнейшим сравнением с полученными результатами по ФОК Комплекс.

Пример расчета столбчатых фундаментов. Исходные данные

Площадка строительства характеризуется следующими атмосферно-климатическими воздействиями и нагрузками:

  • вес снегового покрова (расчетное значение) — 240 кг/м 2 ;
  • давление ветра — 38 кг/м 2 ;

Геология

Относительная разность осадок (Δs/L)u = 0,004;
Максимальная Sumax или средняя Su осадка = 15 см;
Нагрузки на столбчатые фундаменты получены из ПК ЛИРА.
Для ручного расчета рассмотрим фундаменты Фм3 и Фм4

Ручной расчет

Определение размеров подошвы фундамента

Основные размеры подошвы фундаментов определяем исходя из расчета оснований по деформациям. Площадь подошвы предварительно определим из условия:

где P- среднее давление по подошве фундамента, определяем по формуле:

A — площадь подошвы фундамента.

N – вертикальная нагрузка на обрезе фундамента

G – вес фундамента с грунтом на уступах

где γ — среднее значение удельного веса фундамента и грунта на его обрезах, принимаемое равным 2 т/м 3 ;

d — глубина заложения;

Для предварительного определения размеров фундаментов, P определяем по таблице В.3 [СП 22.13330.2011]

Р = 250 кПа = 25,48 т/м 2 .

Для фундамента Фм3, N = 35,049 т

A = 35,049 т / (25,48 т/м 2 — 2,00 т/м 3 · 3,300 м) = 35,049 т/18,88 т/м 2 = 1,856 м 2 .

Принимаем габариты фундамента b = 1,5 м

Для фундамента Фм4, N = 57,880 т

A = 57,880 т / (25,48 т/м 2 — 2,00 т/м 3 · 3,300 м ) = 57,880 т / 18,88 т/м 2 = 3,065 м 2 .

Принимаем габариты фундамента b = 1,8 м

1. Определение расчетного сопротивления грунта основания

5.6.7 При расчете деформаций основания фундаментов с использованием расчетных схем, указанных в 5.6.6, среднее давление под подошвой фундамента р не должно превышать расчетного сопротивления грунта основания R, определяемого по формуле

где γс1 и γс2 коэффициенты условий работы, принимаемые по таблице 5.4[1];

k— коэффициент, принимаемый равным единице, если прочностные характеристики грунта (φп и сп) определены непосредственными испытаниями, и k=1,1, если они приняты по таблицам приложения Б[1];

kz— коэффициент, принимаемый равным единице при b 3 ;

γ’II — то же, для грунтов, залегающих выше подошвы фундамента, кН/м 3 ;

сII— расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента (см. 5.6.10[1]), кПа;

d1— глубина заложения фундаментов, м, бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, определяемая по формуле (5.8)[1]. При плитных фундаментах за d1принимают наименьшую глубину от подошвы плиты до уровня планировки;

db— глубина подвала, расстояние от уровня планировки до пола подвала, м (для сооружений с подвалом глубиной свыше 2 м принимают равным 2 м);

здесь hs— толщина слоя грунта выше подошвы фундамента со стороны подвала, м;

hcf — толщина конструкции пола подвала, м;

γcf — расчетное значение удельного веса конструкции пола подвала, кН/м 3 .

При бетонной или щебеночной подготовке толщиной hn допускается увеличивать d1на hn.

Примечания

1 Формулу (5.7)[1] допускается применять при любой форме фундаментов в плане. Если подошва фундамента имеет форму круга или правильного многоугольника площадью А, значение bпринимают равным .

2 Расчетные значения удельного веса грунтов и материала пола подвала, входящие в формулу (5.7)[1] допускается принимать равными их нормативным значениям.

3 Расчетное сопротивление грунта при соответствующем обосновании может быть увеличено, если конструкция фундамента улучшает условия его совместной работы с основанием, например фундаменты прерывистые, щелевые, с промежуточной подготовкой и др.

4 Для фундаментных плит с угловыми вырезами расчетное сопротивление грунта основания допускается увеличивать, применяя коэффициент kd по таблице 5.6 [1].

5 Если d1>d (d— глубина заложения фундамента от уровня планировки), в формуле (5.7)[1] принимают d1 = d и db = 0.

6 Расчетное сопротивления грунтов основания R, определяемое по формулам (В.1)[1] и (В.2)[1] с учетом значений R0 таблиц B.1-В.10[1] приложения B[1], допускается применять для предварительного назначения размеров фундаментов в соответствии с указаниями разделов 5-6[1].

Исходные данные:

Основание фундаментом являются — суглинком лессовидным непросадочным полутвёрдой консистенции, желто-бурого цвета, с включением прослоев супеси, ожелезненный. (ИГЭ 2)

Для фундамента Фм3 : b = 1,50 м;

Для фундамента Фм4 : b = 1,80 м;

Для фундамента Фм3:

R = (1,10 ·1,00) / 1,00· [0,72 · 1,00 · 1,50 м · 1,780 т/м 3 + 3,87· 3,30 м· 1,691 т/м 3 +

+ (3,87 – 1,00) · 0,0· 1,691 т/м 3 + 6,45·1,1 т/м 2 ] = 1,10· (1,922 т/м 2 +21,596 т/м 2 +

+ 0,0 + 7,095 т/м 2 ) = 33,674 т/м 2 .

Для фундамента Фм4:

R = (1,10 ·1,00) / 1,00 · [0,72 · 1,00 · 1,80 м·1,780 т/м 3 + 3,87 · 3,30 м·1,691 т/м 3 +

+ (3,87 – 1,00) ·0,0·1,691 т/м 3 + 6,45·1,1 т/м 2 ] = 1,10 · (2,307 т/м 2 + 21,596 т/м 2 +

+ 0,0 + 7,095 т/м 2 ) = 34,098 т/м 2 .

2. Определение осадки

5.6.31 Осадку основания фундамента s, см, с использованием расчетной схемы в виде линейно деформируемого полупространства (см. 5.6.6[1]) определяют методом послойного суммирования по формуле

где b — безразмерный коэффициент, равный 0,8;

σzp,i — среднее значение вертикального нормального напряжения (далее — вертикальное напряжение) от внешней нагрузки в i-м слое грунта по вертикали, проходящей через центр подошвы фундамента (см. 5.6.32[1]), кПа;

hi — толщина i-го слоя грунта, см, принимаемая не более 0,4 ширины фундамента;

Ei — модуль деформации i-го слоя грунта по ветви первичного нагружения, кПа;

σzγ,i — среднее значение вертикального напряжения в i-м слое грунта по вертикали, проходящей через центр подошвы фундамента, от собственного веса выбранного при отрывке котлована грунта (см. 5.6.33[1]), кПа;

Ее,i — модуль деформации i-го слоя грунта по ветви вторичного нагружения, кПа;

n — число слоев, на которые разбита сжимаемая толща основания.

При этом распределение вертикальных напряжений по глубине основания принимают в соответствии со схемой, приведенной на рисунке 5.2.

DL — отметка планировки; NL — отметка поверхности природного рельефа; FL — отметка подошвы фундамента; WL — уровень подземных вод; В, С — нижняя граница сжимаемой толщи; d и dn — глубина заложения фундамента соответственно от уровня планировки и поверхности природного рельефа; b — ширина фундамента; р — среднее давление под подошвой фундамента; szg и szg,0 — вертикальное напряжение от собственного веса грунта на глубине z от подошвы фундамента и на уровне подошвы; σzp и σzp,0 — вертикальное напряжение от внешней нагрузки на глубине z от подошвы фундамента и на уровне подошвы; σzγ,i — вертикальное напряжение от собственного веса вынутого в котловане грунта в середине i-го слоя на глубине z от подошвы фундамента; Нс — глубина сжимаемой толщи

Рисунок 5.2 — Схема распределения вертикальных напряжений в линейно-деформируемом полупространстве

Примечания:

1 При отсутствии опытных определений модуля деформации Ее,i для сооружений II и III уровней ответственности допускается принимать Ее,i = 5Еi.

2 Средние значения напряжений σzp,i и σzγ,i в i-м слое грунта допускается вычислять как полусумму соответствующих напряжений на верхней zi-1 и нижней zi границах слоя.

5.6.32 Вертикальные напряжения от внешней нагрузки σzp = σzσzu зависят от размеров, формы и глубины заложения фундамента, распределения давления на грунт по его подошве и свойств грунтов основания. Для прямоугольных, круглых и ленточных фундаментов значения szp, кПа, на глубине z от подошвы фундамента по вертикали, проходящей через центр подошвы, определяют по формуле

где α — коэффициент, принимаемый по таблице 5.8[1] в зависимости от относительной глубины ξ, равной 2z/b;

р — среднее давление под подошвой фундамента, кПа.

5.6.33 Вертикальное напряжение от собственного веса грунта на отметке подошвы фундамента σ = σσzu, кПа, на глубине z от подошвы прямоугольных, круглых и ленточных фундаментов определяют по формуле

где α — то же, что и в 5.6.32[1];

szg,0 — вертикальное напряжение от собственного веса грунта на отметке подошвы фундамента, кПа (при планировке срезкой σzg,0 = γ‘d, при отсутствии планировки и планировке подсыпкой σzγ,0 = γ‘dn, где γ — удельный вес грунта, кН/м 3 , расположенного выше подошвы; d и dn, м, — см. рисунок 5.2[1]).

При этом в расчете σzγ используются размеры в плане не фундамента, а котлована.

5.6.34 При расчете осадки фундаментов, возводимых в котлованах глубиной менее 5 м, допускается в формуле (5.16) не учитывать второе слагаемое.

5.6.41 Нижнюю границу сжимаемой толщи основания принимают на глубине z = Нc, где выполняется условие σzp = 0,5σ. При этом глубина сжимаемой толщи не должна быть меньше Нmin, равной b/2 при b ≤ 10 м, (4 + 0,1b) при 10 ≤ b ≤ 60 м и 10 м при b > 60 м.

Если в пределах глубины Нс, найденной по указанным выше условиям, залегает слой грунта с модулем деформации Е > 100 МПа, сжимаемую толщу допускается принимать до кровли этого грунта.

Если найденная по указанным выше условиям нижняя граница сжимаемой толщи находится в слое грунта с модулем деформации Е ≤ 7 МПа или такой слой залегает непосредственно ниже глубины z = Нс, то этот слой включают в сжимаемую толщу, а за Нс принимают минимальное из значений, соответствующих подошве слоя или глубине, где выполняется условие σzp = 0,2szγ.

При расчете осадки различных точек плитного фундамента глубину сжимаемой толщи допускается принимать постоянной в пределах всего плана фундамента (при отсутствии в ее составе грунтов с модулем деформации Е > 100 МПа).

Площадь подошвы фундамента Фм3: S = 2,25 м 2 (габариты 1,50 м × 1,50 м).

Нормативная нагрузка от конструкций N = 29,208 т

при b = 1,5 м ≤ 10 м

Таблица: Осадка фундамента Фм3

Сжимаемая толща основания H = 2,00 м > Hmin = 0,75 м

Осадка фундамента: S = 0,8·0,049 м = 0,0392 м (3,92 см) 2 (габариты 1,80 м × 1,80 м).

Нормативная нагрузка от конструкций N = 47,598 т

при b = 1,8 м ≤ 10 м

Таблица: Осадка фундамента Фм4

Сжимаемая толща основания H = 2,00 м > Hmin = 0,90 м

Осадка фундамента: S = 0,8· 0,061 м = 0,0488 м (4,88 см) p ср = N0 / A = (35,049 т + 2,00 т/м 3 · 3,300 м · 1,500 м · 1,500 м) / (2,250 м 2 ) =

= 49,899 т / 2,250 м 2 = 22,177 т/м 2

QI = 22,177 т/м 2 · 1,50 м · ( 1,50 м – 0,40 м) / 2 = 18,296025 т

QII = 22,177 т/м 2 · 1,50 м · ( 1,50 м – 0,90 м) / 2 = 9,97965 т

Проверяем выполнение условий (2.26)[2], для бетона класса В15,

18,296025 т 2 · 1,5 м · (3,600 м – 0,040 м)

18,296025 т 2 · 1,5 м · (0,300 м – 0,040 м)

9,97965 т 2 · (1,50 м – 0,40 м) 2 · 1,50 м = 5,0314 тм

МII = 0,125 · 22,177 т/м 2 · (1,50 м – 0,90 м) 2 · 1,50 м = 1,4969 тм

В качестве рабочих стержней примем арматуру класса A-III с расчетным сопротивлением Rs = 37206,93 т/м 2 .

Требуемая площадь сечения арматуры по формуле (2.32)[2]

АsI = 5,0314 тм / (0,9 · (3,600 м – 0,040 м) · 37206,93 т/м 2 ) =

= 5,0314 тм / 119211,00372 т/м 2 = 0,000042 м 2 = 0,42 см 2 .

АsII = 1,4969 тм / (0,9 · (0,300 м – 0,040 м) · 37206,93 т/м 2 ) =

= 1,4969 тм / 8706,421 т/м 2 = 0,000172 м 2 = 1,72 см 2 .

Принимаем 8 Ø10 A-III Аs = 6,280 см 2 , шаг 200 мм.

Для фундамента Фм4

Поперечная сила у грани колонны и грани подошвы (2.25) [2]:

p p ср = N0 / A = (57,880 т + 2,00 т/м 3 · 3,300 м · 1,800 м · 1,800 м) / (3,240 м 2 ) =

= 79,264 т / 3,240 м 2 = 24,464 т/м 2

QI = 24,464 т/м 2 · 1,80 м · ( 1,80 м – 0,40 м) / 2 = 30,82464 т

QII = 24,464 т/м 2 · 1,80 м · ( 1,80 м – 0,90 м) / 2 = 19,81584 т

Проверяем выполнение условий (2.26)[2], для бетона класса В15,

30,82464 т 2 · 1,8 м · (3,600 м – 0,040 м)

30,82464 т 2 · 1,8 м · (0,300 м – 0,040 м)

19,81584 т 2 · (1,80 м – 0,40 м) 2 · 1,80 м = 17,050 тм

МII = 0,125 · 24,464 т/м 2 · (1,80 м – 0,90 м) 2 · 1,80 м = 4,458 тм

В качестве рабочих стержней примем арматуру класса A-III с расчетным сопротивлением Rs = 37206,93 т/м 2 .

Требуемая площадь сечения арматуры по формуле (2.32)[2]

АsI = 17,054 тм / (0,9 · (3,600 м – 0,040 м) · 37206,93 т/м 2 ) =

= 17,054 тм / 119211,00372 т/м 2 = 0,000143 м 2 = 1,43 см 2 .

АsII = 4,458 тм / (0,9 · (0,300 м – 0,040 м) · 37206,93 т/м 2 ) =

= 4,458 тм / 8706,421 т/м 2 = 0,000512 м 2 = 5,12 см 2 .

Принимаем 9 Ø10 A-III Аs = 7,065 см 2 , шаг 200 мм.

Относительная разность осадок (4,88 см – 3,92 см) / 600 см = 0,0016

Источник

Оцените статью