- Упругие деформации грунтов и методы их определения.
- 5.5.4. Расчет деформаций основания (ч. 1)
- А. ОСАДКИ ФУНДАМЕНТОВ
- ТАБЛИЦА 5.17. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА kc
- ТАБЛИЦА 5.18. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА km
- ТАБЛИЦА 5.19. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА k
- ТАБЛИЦА 5.20. ЗНАЧЕНИЯ КОЭФФИЦИЕНТОВ k0, k1, k2, k3
- ТАБЛИЦА 5.21. ЗНАЧЕНИЕ КОЭФФИЦИЕНТА kr
- ТАБЛИЦА 5.22. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ω
Упругие деформации грунтов и методы их определения.
Грунты, представляющие собой сложные дисперсные природные образования, можно рассматривать как упругие тела лишь при определенных условиях.
При действии местной нагрузки (большей структурной прочности грунта) и однократной нагрузке и разгрузке в грунте будут наблюдаться как остаточные, так и упругие деформации, причем остаточные деформации часто будут во много раз превосходить по величине другие деформации; при многократном повторении нагрузки и разгрузки грунт постепенно будет приходить в упруго-уплотненное состояние, характеризующееся постоянством (для данных условий загружения) его упругих свойств.
Если увеличить нагрузку на грунт, сверх той, при которой грунт принял упруго-уплотненное состояние, то в грунте вновь возникнут остаточные деформации, которые при достаточном большом числе циклов загрузки и разгрузки, приведут грунт к новому упруго-уплотненному состоянию, но с большим модулем упругости (меньшим наклоном к оси давлений кривой деформации грунта при разгрузке). Такое увеличение ступеней нагрузки можно производить до тех пор, пока не будет превзойден предел фазы уплотнения грунта и не наступит фаза развития сдвигов.
Если грунт обладает связностью, то до нагрузки, не разрушающей структурных связей, и при малых перемещениях частиц и структурных элементов грунтов, он будет вести себя как упругое тело на что указывает непосредственный опыт передачи через грунты упругих колебаний: вибраций, сейсмических волн, сотрясений и др., если же при циклической нагрузке структурные связи будут разрушены, то грунт только после соответствующих циклов нагрузки и разгрузки придет в новое упругоуплотненное состояние.
Из методов определения упругих деформаций грунтов следует различать метод общих упругих деформаций, когда учитываются упругие перемещения не только точек, лежащих под нагруженной поверхностью, но и точек лежащих вне её, метод местных упругих деформаций, когда учитываются лишь деформации непосредственно в месте приложения нагрузки, а общие упругие деформации массива грунта не рассматриваются; некоторые обобщенные методы, учитывающие как общие восстанавливающие деформации, включая упругие, так и местные, но остаточные деформации.
Метод общих упругих деформаций базируется на строгих решениях теории упругости для упругого полупространства и для упругого слоя ограниченной конечной толщины, лежащего на несжимаемом основании.
Исходной зависимостью при определении общих упругих деформаций полупространства является формула Буссинеска для вертикальных перемещений точек, лежащих на ограничивающей полупространство плоскости (z=0) при действии на полупространство сосредоточенной силы Р – ωz
где с- коэффициент упругого полупространства
Е- модуль упругости следует заменить на модуль общей деформации Ео, а коэффициент Пуассона μ- на коэффициент общей относительной поперечной деформации μо.
При действии на ограничивающую упругое полупространство плоскость местной равномерно распределенной по площадке F нагрузки осадки любой точки определяются путем интегрирования выражения для вертикальных перемещений упругого полупространства от сосредоточенной силы рdξdη.
Sупр— осадка упругого полупространства,
ω’- интегральный коэффициент (табулируемый),
с- коэффициент упругого полупространства
Р- удельное давление на грунт
F- плоскость местной равномерно распределенной по площадке нагрузки
Это выражение показывает, что осадки однородного упругого (или линейно деформируемого) полупространства прямо пропорциональны удельному давлению на грунт Р и корню квадратному из площади √F (ω’/c- коэффициент пропорциональности теоретический).
Важно отметить, что опыты в натуре по изучению осадок грунтовых оснований для площадей от 0,5 до 15м 2 на однородном заиленном песке мощностью около 12м, а также опыты на массовидных однородных суглинках с площадями от 0,25 до 8м 2 в пределах линейной связи между давлением и осадкой дают следующую эмпирическую зависимость
где А- коэффициент пропорциональности (опытный), отличный от теоретического ω’/c.
Рис. 3.1. Зависимость осадки природных грунтов от размеров площади загрузки (по Цытовичу стр.66)
Однако зависимость осадки от величины площади загрузки в природных условиях при большом диапазоне изменения площадей выражается более сложной зависимостью, устанавливаемой на обобщенной кривой средних результатов многочисленных опытов по изучению осадки грунтовых оснований средней уплотненности при одинаковом давлении на грунт, но разной величине площади загрузки.
На этой кривой различаются три области:
Область I – малых площадей загрузки ( ̴ 0,25м 2 ), где грунты находятся в фазе сдвигов, наблюдается уменьшение осадки с увеличением площади; область II- при площадях от 0,25-0,50 до 25-50м 2 , где осадки грунтов строго пропорциональны √F и соответствуют при средних давлениях фазе уплотнения, т.е. весьма близки к теоретическим; область III- для площадей >25-50м 2 , где осадки меньше теоретических, вследствие возрастания модуля упругости (уменьшения деформируемости) грунтов с глубиной. Общепринятая формула расчета зависимости осадки от величины площади загрузки и действующего внешнего давления получим, введя отношение длины к ширине сторон прямоугольной площади загрузки а=l/b (а следовательно l=a*b и F=a*b 2 ) и обозначив через ω величину ω’ √а
где Sупр— осадка упругого полупространства;
ω- коэффициент формы площади подошвы и жесткости фундамента (табулированный);
р- удельное давление на грунт;
b- ширина прямоугольной площади подошвы или диаметр круглой;
Е,μ- модули упругости (деформируемости) полупространства;
l- длина прямоугольной площади подошвы.
Эту формулу используют обычно и для опытного определения по результатам полевой пробной нагрузки (площадкой в 5000см 2 ) модуля общей деформации грунта Ео кгс/см 2 (Н/м 2 ).
где S- общая осадка штампа, но в пределах линейной зависимости между осадками S и давлением Р;
μo— коэффициент относительной поперечной деформации, равной:
для глин и суглинков: твердых и полутвердых 0,1÷0,15
пластичных и текучепластичных 0,30÷0,40
для супесей 0,15÷0,30
для песков 0,20÷0,25
Метод местных упругих деформаций учитывает лишь упругие деформации непосредственно в месте приложения нагрузки и базируется на гипотезе Фусса-Ванклера, согласно которой давление в данной точке прямо пропорционально лишь местной осадке грунта в этой точке, т.е.
где р- удельное давление, кгс/см 2 ;
сz— коэффициент упругости основания (коэффициент постели), кгс/см 2 (Н/м 2 );
z- вертикальное упругое перемещение – местная упругая осадка, см (м).
Уравнение показывает, что упругая осадка грунта будет иметь место лишь в месте приложения нагрузки; в том же месте где р=0, вертикальное упругое перемещение (местная упругая осадка) z=0.
Метод местных упругих деформаций полностью применим для конструкций, имеющих постоянную площадь подошвы и испытывающих одинаковый диапазон изменения внешних давлений (например железнодорожных шпал).
Для фундаментов сооружений занимающих большую площадь в плане применять метод местных упругих деформаций можно лишь с известным приближением при толщине слоя сжимаемого грунта меньше ширины полосы, т.е. для очень малых толщин слоя сжимаемого грунта.
Обобщенные методы определения деформаций грунтов учитывают как общие, так местные упругие деформации грунтов. К ним относятся метод двухпараметрового упругого основания, согласно которому грунтовое основание характеризуется коэффициентов постели с1, кгс/см 2 (Н/м 2 ) и коэффициентом местного упругого сдвига с2 кгс/см (Н/м), и метод структурно-восстанавливающихся деформаций, учитывающий восстанавливающиеся деформации (упругие и адсорбционные), остаточные (структурные).
В последнем методе восстанавливающиеся деформации принимаются за линейно-деформируемые и характеризуются коэффициентом упругого полупространства
а структурные деформации определяются по теории размерностей, исходя из степенной зависимости
где р- внешнее удельное давление (нагрузка), кгс/см 2 (Н/м 2 );
А- число твердости, кгс/см 2 (Н/м 2 );
Sост— остаточная деформация, см (м);
D- диаметр круглой площади загрузки см (м);
n- степень упрочнения.
Величина полной осадки при круглой площади загрузки по этому методу определяется выражением
а осадка точек поверхности грунта вне загруженной площадки.
где r- расстояние от рассматриваемой точки на поверхности грунта до центра круглой площадки.
Применяется при расчете нежестких дорожных одежд.
Дата добавления: 2015-08-08 ; просмотров: 3847 ;
Источник
5.5.4. Расчет деформаций основания (ч. 1)
А. ОСАДКИ ФУНДАМЕНТОВ
Определение осадки методом послойного суммирования. В методе послойного суммирования приняты следующие допущения:
- – осадка основания вызывается дополнительным давлением р0 , равным полному давлению под подошвой фундамента р за вычетом вертикального нормального напряжения от собственного веса грунта на уровне подошвы фундамента: р0 = р – σzg,0 (при планировке срезкой принимается σzg,0 = γ´d , при отсутствии планировки и планировке подсыпкой σzg,0 = γ´dn , где γ´ — удельный вес грунта, расположенного выше подошвы; d и dn — глубина заложения фундамента от уровня планировки и природного рельефа);
- – распределение по глубине дополнительных вертикальных нормальных напряжений σzp от внешнего давления р0 принимается по теории линейно-деформируемой среды как в однородном основании (см. п. 5.2);
- – при подсчете осадок основание делится на «элементарные» слои, сжатие которых определяется от дополнительного вертикального нормального напряжения σzp , действующего по оси фундамента в середине рассматриваемого слоя;
- – сжимаемая толща основания ограничивается глубиной z = Нс , где выполняется условие
Если найденная по условию (5.59) нижняя граница сжимаемой толщи находится в слое грунта с модулем деформации Е z = Hc , нижняя граница сжимаемой толщи определяется исходя из условия σzp = 0,1σzg .
Осадка основания s методом послойного суммирования определяется по формуле
где β — безразмерный коэффициент, равный 0,8; σzp,i — среднее значение дополнительного вертикального нормального напряжения в i -м слое грунта, равное полусумме указанных напряжений на верхней zi-1 и нижней zi границах слоя по вертикали, проходящей через центр подошвы фундамента; hi и Еi — соответственно толщина и модуль деформации i -го слоя грунта; n — число слоев, на которое разбита сжимаемая толща основания.
При этом распределение вертикальных нормальных напряжений по глубине основания принимается в соответствии со схемой, приведенной на рис. 5.26.
Дополнительные вертикальные нормальные напряжения по вертикали, проходящей через центр рассматриваемого фундамента, на глубине z от его подошвы определяются:
σzp — от дополнительного давления р0 под подошвой рассчитываемого фундамента [см. формулу (5.12)]; σzp,A — от дополнительного давления р0j под подошвой j -го влияющего фундамента методом угловых точек по формуле (5.18).
Суммарное дополнительное напряжение по оси рассчитываемого фундамента с учетом влияния нагрузок от соседних фундаментов определяется по формуле (5.19).
Пример 5.12. Рассчитать осадку фундамента Ф-1 здания с гибкой конструктивной схемой с учетом влияния нагрузки на фундамент Ф-2 по условиям примера 5.2 (см. рис. 5.11) при следующих данных. С поверхности до глубины h + h1 = 6 м залегает песок пылеватый со следующими характеристиками, принятыми по справочным таблицам (см. гл. 1): γs = 26,6 кН/м 3 ; γ = 17,8 кН/м 3 ; ω = 0,14; е = 0,67; сII = 4 кПа; φII = 30°; E = 18 000 кПа. Ниже залегает песок мелкий с характеристиками: γs = 26,6 кН/м 3 ; γ = 19,9 кН/м 3 ; ω = 0,21; е = 0,62; сII = 2 кПа; φII = 32°; E = 28 000 кПа. Уровень подземных вод находится на глубине 6,8 м от поверхности. Суммарная нагрузка на основание от каждого фундамента (с учетом его веса) N = 5,4 МН.
Решение. По формуле (5.21) удельный вес песка мелкого с учетом взвешивающего действия воды
γsb = (26,6 – 10)/(1 + 0,62) = 10,2 кН/м 3 .
По табл. 5.11 находим: γc1 = 1,2 и γc2 = 1. По табл. 5.12 при φII = 30° находим: Mγ = 1,15; Мq = 5,59; Мc = 7,95. Поскольку характеристики грунта приняты по таблицам, k = 1,1.
По формуле (5.29) получаем:
кПа.
Среднее давление под подошвой
р = 5400/4 2 = 338 кПа R = 341 кПа;
дополнительное давление на основание
Дополнительные вертикальные нормальные напряжения в основании фундаментов Ф-1 и Ф-2 подсчитаны в примере 5.2, приведены в табл. 5.6 и показаны на рис. 5.11. Дополняем табл. 5.6 подсчетом напряжений от собственного веса грунтов σzg для определения нижней границы сжимаемой толщи (табл. 5.16).
Из табл. 5.16 видно, что нижняя граница сжимаемой толщи под фундаментом Ф-1 находится на глубине z1 = 8,0 м (при учете нагрузки только на этот фундамент) и на глубине z2 = 8,8 м (при учете влияния фундамента Ф-2).
ТАБЛИЦА 5.16. К ПРИМЕРУ 5.12
z , м | σzp1 | σzp2 | σzp | σzg | 0,2 σzg | E |
0 | 300 | 0 | 300 | 36 | 7 | 18 000 |
0,8 | 288 | 0 | 288 | 50 | 10 | |
1,6 | 240 | 0 | 240 | 64 | 13 | |
2,4 | 182 | 1 | 183 | 78 | 16 | |
3,2 | 135 | 2 | 137 | 93 | 19 | |
4,0 | 101 | 3 | 104 | 107 | 21 | |
4,8 | 77 | 4 | 81 | 123 | 25 | 28 000 |
5,6 | 60 | 5 | 65 | 131 | 26 | |
6,4 | 48 | 6 | 54 | 139 | 28 | |
7,2 | 39 | 6 | 45 | 147 | 29 | |
8,0 | 32 | 7 | 39 | 156 | 31 | |
8,8 | 27 | 7 | 34 | 164 | 33 |
Примечание. Значения напряжений и модуля даны в кПа.
Определяем осадку фундамента Ф-1 по формуле (5.60):
без учета влияния Ф-2
0,033 м = 3,3 см.
с учетом влияния Ф-2
0,035 м = 3,5 см.
Определение осадки основания с использованием схемы линейно-деформируемого слоя.
Средняя осадка фундамента на слое конечной толщины (рис. 5.27) определяется по формуле [4]
где р — среднее давление под подошвой фундамента; b — ширина прямоугольного или диаметр круглого фундамента; kc и km — коэффициенты, принимаемые по табл. 5.17 и 5.18; n — число слоев, различающихся по сжимаемости в пределах расчетной толщины слоя H ; ki и ki-1 — коэффициенты, определяемые по табл. 5.19 в зависимости от формы фундамента, соотношения сторон прямоугольного фундамента и относительной глубины, на которой расположены подошвы и кровля i -го слоя (соответственно ζi = 2zi/b и ζi-1 = 2zi-1/b) ; Ei — модуль деформации i -го слоя грунта.
Формула (5.61) служит для определения средней осадки основания, загруженного равномерно распределенной по ограниченной площади нагрузкой. Эту формулу допускается применять для определения осадки жестких фундаментов.
ТАБЛИЦА 5.17. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА kc
Относительная толщина слоя ζ´ = 2H/b | kс |
0 ζ´ ≤ 0,5 | 1,5 |
0,5 ζ´ ≤ l | 1,4 |
1 ζ´ ≤ 2 | 1,3 |
2 ζ´ ≤ 3 | 1,2 |
3 ζ´ ≤ 5 | 1,1 |
ζ´ > 5 | 1,0 |
ТАБЛИЦА 5.18. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА km
Ширина фундамента, м | km при среднем значении Е , МПа | |
b > 10 10 ≤ b ≤ 15 b > 15 | 1 1 1 | 1 1,35 1,5 |
Расчетная толщина линейно-деформируемого слоя H (см. рис. 6.27) принимается до кровли малосжимаемого грунта (см. п. 5.1), а при ширине (диаметре) фундамента b > 10 м и среднем значении модуля деформации грунтов основания E > 10 МПа вычисляется по формуле
где H0 и ψ — принимаются соответственно равными для оснований, сложенных пылевато-глинистыми грунтами 9 м и 0,15, а сложенных песчаными грунтами 6 м и 0,1; kp — коэффициент, принимаемый; kp = 0,8 при среднем давлении под подошвой фундамента p = 100 кПа; kp = 1,2 при р = 500 кПа; при промежуточных значениях — по интерполяции.
Если основание сложено и пылевато-глинистыми, и песчаными грунтами, значение Н определяется по формуле
где Нs — толщина слоя, вычисленная по формуле (5.62) в предположении, что основание сложено только песчаными грунтами; hci — суммарная толщина слоев пылевато-глинистых грунтов в пределах от подошвы фундамента до глубины Hci равной значению Н , вычисленному по формуле (5.62) в предположении, что основание сложено только пылевато-глинистыми грунтами.
ТАБЛИЦА 5.19. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА k
ζ = 2z/b | k для фундаментов | |||||||
круглых | прямоугольных с соотношением сторон η = l/b | ленточных ( η ≥ 10) | ||||||
1 | 1,4 | 1,8 | 2,4 | 3,2 | 5 | |||
0,0 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 |
0,4 | 0,090 | 0,100 | 0,100 | 0,100 | 0,100 | 0,100 | 0,100 | 0,104 |
0,8 | 0,179 | 0,200 | 0,200 | 0,200 | 0,200 | 0,200 | 0,200 | 0,208 |
1,2 | 0,266 | 0,299 | 0,300 | 0,300 | 0,300 | 0,300 | 0,300 | 0,311 |
1,6 | 0,348 | 0,380 | 0,394 | 0,397 | 0,397 | 0,397 | 0,397 | 0,412 |
2,0 | 0,411 | 0,446 | 0,472 | 0,482 | 0,486 | 0,486 | 0,486 | 0,511 |
2,4 | 0,461 | 0,499 | 0,538 | 0,556 | 0,565 | 0,567 | 0,567 | 0,605 |
2,8 | 0,501 | 0,542 | 0,592 | 0,618 | 0,635 | 0,640 | 0,640 | 0,687 |
3,2 | 0,532 | 0,577 | 0,637 | 0,671 | 0,696 | 0,707 | 0,709 | 0,763 |
3,6 | 0,558 | 0,606 | 0,676 | 0,717 | 0,750 | 0,768 | 0,772 | 0,831 |
4,0 | 0,579 | 0,630 | 0,708 | 0,756 | 0,796 | 0,820 | 0,830 | 0,892 |
4,4 | 0,596 | 0,650 | 0,735 | 0,789 | 0,837 | 0,867 | 0,883 | 0,949 |
4,8 | 0,611 | 0,668 | 0,759 | 0,819 | 0,873 | 0,908 | 0,932 | 1,001 |
5,2 | 0,624 | 0,683 | 0,780 | 0,834 | 0,904 | 0,948 | 0,977 | 1,050 |
5,6 | 0,635 | 0,697 | 0,798 | 0,867 | 0,933 | 0,981 | 1,018 | 1,095 |
6,0 | 0,645 | 0,708 | 0,814 | 0,887 | 0,958 | 1,011 | 1,056 | 1,138 |
6,4 | 0,653 | 0,719 | 0,828 | 0,904 | 0,980 | 1,031 | 1,090 | 1,178 |
6,8 | 0,661 | 0,728 | 0,841 | 0,920 | 1,000 | 1,065 | 1,122 | 1,215 |
7,2 | 0,668 | 0,736 | 0,852 | 0,935 | 1,019 | 1,088 | 1,152 | 1,251 |
7,6 | 0,674 | 0,744 | 0,863 | 0,948 | 1,036 | 1,109 | 1,180 | 1,285 |
8,0 | 0,679 | 0,751 | 0,872 | 0,960 | 1,051 | 1,128 | 1,205 | 1,316 |
8,4 | 0,684 | 0,757 | 0,881 | 0,970 | 1,065 | 1,146 | 1,229 | 1,347 |
8,8 | 0,689 | 0,762 | 0,888 | 0,980 | 1,078 | 1,162 | 1,251 | 1,376 |
9,2 | 0,693 | 0,768 | 0,896 | 0,989 | 1,089 | 1,178 | 1,272 | 1,404 |
9,6 | 0,697 | 0,772 | 0,902 | 0,998 | 1,100 | 1,192 | 1,291 | 1,431 |
10,0 | 0,700 | 0,777 | 0,908 | 1,005 | 1,110 | 1,205 | 1,309 | 1,456 |
11,0 | 0,705 | 0,786 | 0,922 | 1,022 | 1,132 | 1,233 | 1,349 | 1,506 |
12,0 | 0,710 | 0,794 | 0,933 | 1,037 | 1,151 | 1,257 | 1,384 | 1,550 |
Примечание. При промежуточных значениях ζ и η коэффициент k определяется по интерполяции.
Значение Н , найденное по формулам (5.62) и (5.63), должно быть увеличено на толщину слоя грунта с модулем деформации E H и толщина его не превышает 0,2 H . При большей толщине слоя такого грунта, а также если лежащие выше слои имеют модуль деформации E р = 0,3 МПа, если плита опирается на слой песка толщиной 5 м с модулем деформации E = 30 МПа, который подстилается моренным суглинком, имеющим Е = 40 МПа.
Решение. Расчетную толщину слои определяем но формуле (5.62) для двух случаев: основание сложено только песчаными и только пылевато-глинистыми грунтами (при р = 0,3 МПа коэффициент kр = 1):
Тогда по формуле (5.63)
H = 8 + 7/3 = 10,3 м ≈ 10 м.
При ζ´ = 2 · 10/20 = 1 по табл. 5.17 kc = 1,4; при Е > 10 МПа и b > 15 м по табл. 5.18 коэффициент km = 1,5.
Определяем коэффициенты ki по табл. 5.19, учитывая, что η = 100/20 = 5:
Тогда по формуле (5.61)
м = 4 см.
Осадки центра, середин сторон и угловых точек прямоугольной площади размером b×l при действии на нее равномерного давления р определяются по формуле [2]:
где E — модуль деформации грунта основания, принимаемый средним в пределах сжимаемой толщи; k´ = k0 коэффициент, принимаемый по табл. 5.20 для центра прямоугольника; k´ = k1 — то же, для середины большей стороны; k´ = k2 — то же, для середины меньшей стороны; k´ = k3 — то же, для угловой точки.
Осадки поверхности основания при действии на него равномерного давления р по круглой площадке радиусом r на расстоянии R от центра этой площадки также можно определить по формуле (5.64), в которой коэффициент k´ = kr принимается по табл. 5.21 [2]. Указанным способом допускается определять осадки поверхности основания за пределами жесткого круглого фундамента.
Влияние на осадку рассчитываемого фундамента других фундаментов, нагрузок на полы и т.п. может быть оценено по формуле (5.64) с использованием схемы фиктивных фундаментов аналогично определению напряжений в основании методом угловых точек либо с помощью ЭВМ по стандартной программе. Дополнительную осадку рассчитываемого фундамента от влияния других фундаментов допускается принимать равной дополнительной осадке его центра.
ТАБЛИЦА 5.20. ЗНАЧЕНИЯ КОЭФФИЦИЕНТОВ k0, k1, k2, k3
η | ζ´ = 2H/b | k0 | k1 | k2 | k3 | η | ζ´ = 2H/b | k0 | k1 | k2 | k3 |
1 | 0,2 0,5 1 2 3 5 7 10 | 0,091 0,236 0,464 0,701 0,801 0,892 0,928 0,955 | 0,045 0,109 0,236 0,436 0,482 0,564 0,601 0,628 | 0,045 0,109 0,236 0,436 0,482 0,564 0,601 0,628 | 0,024 0,056 0,115 0,231 0,305 0,380 0,416 0,444 | 3 | 0,2 0,5 1 2 3 5 7 10 | 0,091 0,227 0,464 0,801 1,019 1,238 1,338 1,420 | 0,045 0,109 0,227 0,464 0,655 0,855 0,955 1,037 | 0,045 0,107 0,225 0,400 0,510 0,656 0,742 0,815 | 0,024 0,056 0,115 0,231 0,325 0,460 0,545 0,617 |
1,5 | 0,2 0,5 1 2 3 5 7 10 | 0,091 0,227 0,464 0,773 0,910 1,037 1,092 1,137 | 0,045 0,109 0,236 0,446 0,564 0,682 0,737 0,783 | 0,045 0,108 0,231 0,404 0,508 0,617 0,669 0,712 | 0,024 0,056 0,115 0,231 0,323 0,426 0,478 0,518 | 5 | 0,2 0,5 1 2 3 5 7 10 | 0,091 0,227 0,454 0,801 1,028 1,310 1,456 1,592 | 0,045 0,109 0,227 0,464 0,655 0,919 1,065 1,192 | 0,045 0,107 0,225 0,400 0,511 0,656 0,752 0,852 | 0,024 0,056 0,115 0,231 0,326 0,462 0,555 0,652 |
2 | 0,2 0,5 1 2 3 5 7 10 | 0,091 0,227 0,464 0,792 0,974 1,128 1,201 1,265 | 0,045 0,109 0,227 0,464 0,610 0,755 0,837 0,883 | 0,044 0,107 0,225 0,403 0,514 0,641 0,708 0,762 | 0,024 0,056 0,115 0,231 0,324 0,448 0,512 0,565 | 10 | 0,2 0,5 1 2 3 5 7 10 | 0,091 0,227 0,464 0,801 1,028 1,319 1,492 1,702 | 0,045 0,109 0,227 0,464 0,655 0,928 1,110 1,310 | 0,045 0,107 0,225 0,400 0,511 0,658 0,756 0,858 | 0,024 0,056 0,115 0,231 0,326 0,463 0,558 0,659 |
ТАБЛИЦА 5.21. ЗНАЧЕНИЕ КОЭФФИЦИЕНТА kr
ζ´ = H/r | kr при ρ = R/r | |||||||||||
0 | 0,25 | 0,5 | 0,75 | 1 | 1,25 | 1,5 | 2 | 2,5 | 3 | 4 | 5 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0,25 | 0,12 | 0,12 | 0,12 | 0,12 | 0,05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0,5 | 0,24 | 0,24 | 0,23 | 0,22 | 0,11 | 0,01 | 0 | 0 | 0 | 0 | 0 | 0 |
0,75 | 0,35 | 0,35 | 0,34 | 0,29 | 0,16 | 0,03 | 0,01 | 0 | 0 | 0 | 0 | 0 |
1 | 0,45 | 0,44 | 0,42 | 0,35 | 0,21 | 0,07 | 0,02 | 0 | 0 | 0 | 0 | 0 |
1,5 | 0,58 | 0,57 | 0,53 | 0,45 | 0,28 | 0,13 | 0,07 | 0,02 | 0 | 0 | 0 | 0 |
2 | 0,65 | 0,64 | 0,60 | 0,52 | 0,34 | 0,17 | 0,10 | 0,04 | 0,01 | 0 | 0 | 0 |
3 | 0,74 | 0,73 | 0,68 | 0,59 | 0,41 | 0,23 | 0,16 | 0,08 | 0,04 | 0,02 | 0 | 0 |
5 | 0,81 | 0,79 | 0,74 | 0,66 | 0,47 | 0,30 | 0,22 | 0,13 | 0,09 | 0,06 | 0,02 | 0,01 |
7 | 0,84 | 0,82 | 0,77 | 0,69 | 0,50 | 0,33 | 0,24 | 0,15 | 0,11 | 0,08 | 0,04 | 0,02 |
10 | 0,85 | 0,83 | 0,79 | 0,71 | 0,52 | 0,35 | 0,27 | 0,18 | 0,13 | 0,10 | 0,06 | 0,04 |
∞ | 0,91 | 0,89 | 0,84 | 0,76 | 0,58 | 0,40 | 0,32 | 0,23 | 0,18 | 0,15 | 0,11 | 0,09 |
ТАБЛИЦА 5.22. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ω
Форма загруженной площади | η | ω для определения | |||
осадки равномерно загруженной площади | осадки абсолютно жесткого фундамента ωconst | ||||
в угловой точке ωc | в центре ω0 | в средней ωm | |||
Прямоугольная | 1 | 0,5 ω0 | 1,12 | 0,95 | 0,88 |
1,5 | 1,36 | 1,15 | 1,08 | ||
2 | 1,53 | 1,30 | 1,22 | ||
3 | 1,78 | 1,53 | 1,44 | ||
4 | 1,96 | 1,70 | 1,61 | ||
5 | 2,10 | 1,83 | 1,72 | ||
6 | 2,23 | 1,96 | 1,83 | ||
7 | 2,33 | 2,04 | 1,92 | ||
8 | 2,42 | 2,12 | 2,00 | ||
9 | 2,49 | 2.19 | 2,06 | ||
10 | 2,53 | 2,25 | 2,12 | ||
Круглая | – | 0,64 | 1,00 | 0,85 | 0,79 |
Определение осадки путем непосредственного применения теории линейно-деформируемой среды. Для предварительной оценки осадок фундаментов допускается пользоваться формулой
где ω — коэффициент, принимаемый по табл. 5.22; v — коэффициент Пуассона.
Во всех случаях формула (5.65) приводит к преувеличению расчетных осадок (по сравнению с методами, рекомендуемыми нормами). Достаточно удовлетворительные результаты эта формула дает при ширине фундамента b η = l/b
Сорочан Е.А. Основания, фундаменты и подземные сооружения
Источник