- Расчет осадки фундамента мелкого заложения
- 5.5.4. Расчет деформаций основания (ч. 1)
- А. ОСАДКИ ФУНДАМЕНТОВ
- ТАБЛИЦА 5.17. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА kc
- ТАБЛИЦА 5.18. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА km
- ТАБЛИЦА 5.19. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА k
- ТАБЛИЦА 5.20. ЗНАЧЕНИЯ КОЭФФИЦИЕНТОВ k0, k1, k2, k3
- ТАБЛИЦА 5.21. ЗНАЧЕНИЕ КОЭФФИЦИЕНТА kr
- ТАБЛИЦА 5.22. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ω
Расчет осадки фундамента мелкого заложения
Значение конечной осадки фундамента определяется по методу послойного суммирования по формуле:
Где s – конечная (стабилизированная) осадка фундамента;
– осадка i – слоя грунта основания;
— безразмерный коэффициент принимаемый 0.8;
n – число слоев, на которое разбита сжимаемая толща основания;
— среднее значение дополнительного напряжения в i-слое грунта;
— толщина i- го слоя;
— модуль деформации i –го слоя грунта.
Расчет осадки производится в такой последовательности:
1. На геологический разрез наносят контур фундамента;
2. Толщу основания делят на слои ах некоторой ограниченной глубины (ориентировочно 4-кратной ширины подошвы фундамента). Толщину слоем принимают 0.4 ширины фундамента ( ;
3. Вычисляют значения вертикального напряжения от собственного веса грунта на границах выделенных слоев по оси Z, проходящей через центр подошвы фундамента, по формуле:
где – напряжение от собственного веса грунта на уровне подошвы фундамента;
— удельный вес грунта, залегающего выше подошвы фундамента;
– глубина заложения фундамента от поверхности природного рельефа;
— соответственно удельный вес и толщина i-го слоя грунта.
Удельный вес грунта, залегающего ниже уровня подземных вод, но выше водоупора, принимается с учетом взвешивающего действия воды. При определении в водоупорном слое следует учитывать давление столба воды;
4. Определяют дополнительные вертикальные напряжения на границах выделенных слоев по оси Z, проходящей через центр подошвы фундамента по формуле:
Где — коэффициент принимаемый по табл. I прил.2 СНиП 5.01.01-99;
– дополнительное вертикальное давление на основание;
P – среднее давление под подошвой фундамента;
5. Устанавливают нижнюю границу сжимаемой толщи грунта основания, принимая ее на глубине z = hc, где выполняется условие:
6. Вычисляют значение деформации каждого слоя сжимаемой толщи, а затем определяют осадку фундамента суммированием деформаций отдельных слоев.
Расчет осадки фундамента Ф1:
Напряжение от собственного веса грунта на уровне подошвы фундамента:
Расчет осадки фундамента выполняем в табличной форме.
Таблица 2 Расчет осадок для фундамента Ф1.
№ слоя | Z, м | szg | x=2z/b | a | szp | szpi | Ei, Мпа | si, см |
.6 | 0,0 0,6 1,2 1.8 2,4 3.0 3.6 4.2 4.8 5.4 | 28.5 39.9 51.5 63.2 74.8 86.5 98.1 110.1 122.1 134.1 | 0.5 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 | 1.00 0.972 0.685 0.552 0.326 0.244 0.174 0.135 0.106 0.082 | 113.0 109.84 77.41 62.37 36.84 27.57 19.66 15.25 11.98 9.27 | 111.42 93.62 69.89 49.61 32.20 23.62 17.46 13.62 10.62 | 38.0 12.0 12.0 12.0 12.0 12.0 12.0 30.0 30.0 | 0.14 0.37 0.28 0.20 0.13 0.09 0.07 0.02 0.02 |
|
Рисунок 2. Эпюры напряжений в основании фундамента Ф1.
Расчет осадки фундамента Ф3:
Напряжение от собственного веса грунта на уровне подошвы фундамента:
Расчет осадки фундамента выполняем в табличной форме.
Расчет осадок для фундамента Ф3.
№ слоя | Z, м | szg | x=2z/b | a | szp | szpi | Ei, Мпа | si, см |
0.0 0.9 1.9 2.9 3.9 4.5 5.1 5.6 6.3 7.0 7.6 | 22.8 39.9 57.0 74.1 85.7 97.4 109.0 120.7 132.3 143.9 155.6 | 0.00 0.6 1.3 1.9 2.6 3.0 3.4 3.7 4.2 4.7 5.1 | 1.00 0.885 0.592 0.37 0.24 0.19 0.154 0.131 0.106 0.087 0.075 | 344.6 304.9 204.0 127.5 82.7 65.5 53.1 45.1 36.5 29.9 25.8 | 324.8 254.5 165.8 105.1 74.1 59.3 49.1 40.8 33.3 27.9 | 38.0 | 0.41 1.02 0.66 0.42 0.12 0.09 0.08 0.07 0.05 0.04 |
Ssi = 2.96 см
Рисунок 3. Эпюры напряжений в основании фундамента Ф3.
Расчет осадки фундамента во времени
Сущность расчета заключается в определении величины осадки фундамента в заданные промежутки времени:
Где U – степень консолидации;
S – конечная осадка.
Степень уплотнения определяется по формуле:
где — коэффициент времени, зависящий от физических свойств грунта, толщины слоя, условий и времени консолидации; определяется по формуле:
Здесь: – коэффициент фильтрации, см/год;
— коэффициент относительной сжимаемости.
Параметры U и функционально связаны и задаваясь U, можно определить
Расчет осадки фундамента Ф1 во времени.
Расчет будем производить для суглинка.
Вычислим значение коэффициента консолидации:
Задаемся значениями степени консолидации U: 0.2; 0.4; 0.6; 0.8; 0.95.
Вычисляем время по формуле, имея в виду что фильтрация двухсторонняя.
Таким образом, получаем:
= 0.2 х 1.35 = 0.27 см;
= 1.3 х 0.08 = 0.104 года
= 0.4 х 1.35 = 0.54 см;
= 1.3 х 0.31 = 0.40 года
= 0.6 х 1.35 = 0.81 см;
= 1.3 х 0.71 = 0.92 года
= 0.8 х 1.35 = 1.08 см;
= 1.3 х 1.4 = 1.82 года
= 0.95 х 1.35 = 1.28 см;
= 1.3 х 2.8 = 3.64 года
График осадки фундамента Ф1 во времени
Расчет осадки фундамента Ф3 во времени.
Вычислим значение коэффициента консолидации:
Задаемся значениями степени консолидации U: 0.2; 0.4; 0.6; 0.8; 0.95.
Вычисляем время по формуле, имея в виду что фильтрация двухсторонняя.
Таким образом, получаем:
= 0.2 х 3.24 = 0.648 см;
= 1.3 х 0.08 = 0.104 года
= 0.4 х 3.24 = 1.296 см;
= 1.3 х 0.31 = 0.40 года
= 0.6 х 3.24 = 1.944 см;
= 1.3 х 0.71 = 0.92 года
= 0.8 х 3.24 = 2.59 см;
= 1.3 х 1.4 = 1.82 года
= 0.95 х 3.24 = 3.078 см;
= 1.3 х 2.8 = 3.64 года
График осадки фундамента Ф3 во времени.
Вариант свайных фундаментов
Источник
5.5.4. Расчет деформаций основания (ч. 1)
А. ОСАДКИ ФУНДАМЕНТОВ
Определение осадки методом послойного суммирования. В методе послойного суммирования приняты следующие допущения:
- – осадка основания вызывается дополнительным давлением р0 , равным полному давлению под подошвой фундамента р за вычетом вертикального нормального напряжения от собственного веса грунта на уровне подошвы фундамента: р0 = р – σzg,0 (при планировке срезкой принимается σzg,0 = γ´d , при отсутствии планировки и планировке подсыпкой σzg,0 = γ´dn , где γ´ — удельный вес грунта, расположенного выше подошвы; d и dn — глубина заложения фундамента от уровня планировки и природного рельефа);
- – распределение по глубине дополнительных вертикальных нормальных напряжений σzp от внешнего давления р0 принимается по теории линейно-деформируемой среды как в однородном основании (см. п. 5.2);
- – при подсчете осадок основание делится на «элементарные» слои, сжатие которых определяется от дополнительного вертикального нормального напряжения σzp , действующего по оси фундамента в середине рассматриваемого слоя;
- – сжимаемая толща основания ограничивается глубиной z = Нс , где выполняется условие
Если найденная по условию (5.59) нижняя граница сжимаемой толщи находится в слое грунта с модулем деформации Е z = Hc , нижняя граница сжимаемой толщи определяется исходя из условия σzp = 0,1σzg .
Осадка основания s методом послойного суммирования определяется по формуле
где β — безразмерный коэффициент, равный 0,8; σzp,i — среднее значение дополнительного вертикального нормального напряжения в i -м слое грунта, равное полусумме указанных напряжений на верхней zi-1 и нижней zi границах слоя по вертикали, проходящей через центр подошвы фундамента; hi и Еi — соответственно толщина и модуль деформации i -го слоя грунта; n — число слоев, на которое разбита сжимаемая толща основания.
При этом распределение вертикальных нормальных напряжений по глубине основания принимается в соответствии со схемой, приведенной на рис. 5.26.
Дополнительные вертикальные нормальные напряжения по вертикали, проходящей через центр рассматриваемого фундамента, на глубине z от его подошвы определяются:
σzp — от дополнительного давления р0 под подошвой рассчитываемого фундамента [см. формулу (5.12)]; σzp,A — от дополнительного давления р0j под подошвой j -го влияющего фундамента методом угловых точек по формуле (5.18).
Суммарное дополнительное напряжение по оси рассчитываемого фундамента с учетом влияния нагрузок от соседних фундаментов определяется по формуле (5.19).
Пример 5.12. Рассчитать осадку фундамента Ф-1 здания с гибкой конструктивной схемой с учетом влияния нагрузки на фундамент Ф-2 по условиям примера 5.2 (см. рис. 5.11) при следующих данных. С поверхности до глубины h + h1 = 6 м залегает песок пылеватый со следующими характеристиками, принятыми по справочным таблицам (см. гл. 1): γs = 26,6 кН/м 3 ; γ = 17,8 кН/м 3 ; ω = 0,14; е = 0,67; сII = 4 кПа; φII = 30°; E = 18 000 кПа. Ниже залегает песок мелкий с характеристиками: γs = 26,6 кН/м 3 ; γ = 19,9 кН/м 3 ; ω = 0,21; е = 0,62; сII = 2 кПа; φII = 32°; E = 28 000 кПа. Уровень подземных вод находится на глубине 6,8 м от поверхности. Суммарная нагрузка на основание от каждого фундамента (с учетом его веса) N = 5,4 МН.
Решение. По формуле (5.21) удельный вес песка мелкого с учетом взвешивающего действия воды
γsb = (26,6 – 10)/(1 + 0,62) = 10,2 кН/м 3 .
По табл. 5.11 находим: γc1 = 1,2 и γc2 = 1. По табл. 5.12 при φII = 30° находим: Mγ = 1,15; Мq = 5,59; Мc = 7,95. Поскольку характеристики грунта приняты по таблицам, k = 1,1.
По формуле (5.29) получаем:
кПа.
Среднее давление под подошвой
р = 5400/4 2 = 338 кПа R = 341 кПа;
дополнительное давление на основание
Дополнительные вертикальные нормальные напряжения в основании фундаментов Ф-1 и Ф-2 подсчитаны в примере 5.2, приведены в табл. 5.6 и показаны на рис. 5.11. Дополняем табл. 5.6 подсчетом напряжений от собственного веса грунтов σzg для определения нижней границы сжимаемой толщи (табл. 5.16).
Из табл. 5.16 видно, что нижняя граница сжимаемой толщи под фундаментом Ф-1 находится на глубине z1 = 8,0 м (при учете нагрузки только на этот фундамент) и на глубине z2 = 8,8 м (при учете влияния фундамента Ф-2).
ТАБЛИЦА 5.16. К ПРИМЕРУ 5.12
z , м | σzp1 | σzp2 | σzp | σzg | 0,2 σzg | E |
0 | 300 | 0 | 300 | 36 | 7 | 18 000 |
0,8 | 288 | 0 | 288 | 50 | 10 | |
1,6 | 240 | 0 | 240 | 64 | 13 | |
2,4 | 182 | 1 | 183 | 78 | 16 | |
3,2 | 135 | 2 | 137 | 93 | 19 | |
4,0 | 101 | 3 | 104 | 107 | 21 | |
4,8 | 77 | 4 | 81 | 123 | 25 | 28 000 |
5,6 | 60 | 5 | 65 | 131 | 26 | |
6,4 | 48 | 6 | 54 | 139 | 28 | |
7,2 | 39 | 6 | 45 | 147 | 29 | |
8,0 | 32 | 7 | 39 | 156 | 31 | |
8,8 | 27 | 7 | 34 | 164 | 33 |
Примечание. Значения напряжений и модуля даны в кПа.
Определяем осадку фундамента Ф-1 по формуле (5.60):
без учета влияния Ф-2
0,033 м = 3,3 см.
с учетом влияния Ф-2
0,035 м = 3,5 см.
Определение осадки основания с использованием схемы линейно-деформируемого слоя.
Средняя осадка фундамента на слое конечной толщины (рис. 5.27) определяется по формуле [4]
где р — среднее давление под подошвой фундамента; b — ширина прямоугольного или диаметр круглого фундамента; kc и km — коэффициенты, принимаемые по табл. 5.17 и 5.18; n — число слоев, различающихся по сжимаемости в пределах расчетной толщины слоя H ; ki и ki-1 — коэффициенты, определяемые по табл. 5.19 в зависимости от формы фундамента, соотношения сторон прямоугольного фундамента и относительной глубины, на которой расположены подошвы и кровля i -го слоя (соответственно ζi = 2zi/b и ζi-1 = 2zi-1/b) ; Ei — модуль деформации i -го слоя грунта.
Формула (5.61) служит для определения средней осадки основания, загруженного равномерно распределенной по ограниченной площади нагрузкой. Эту формулу допускается применять для определения осадки жестких фундаментов.
ТАБЛИЦА 5.17. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА kc
Относительная толщина слоя ζ´ = 2H/b | kс |
0 ζ´ ≤ 0,5 | 1,5 |
0,5 ζ´ ≤ l | 1,4 |
1 ζ´ ≤ 2 | 1,3 |
2 ζ´ ≤ 3 | 1,2 |
3 ζ´ ≤ 5 | 1,1 |
ζ´ > 5 | 1,0 |
ТАБЛИЦА 5.18. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА km
Ширина фундамента, м | km при среднем значении Е , МПа | |
b > 10 10 ≤ b ≤ 15 b > 15 | 1 1 1 | 1 1,35 1,5 |
Расчетная толщина линейно-деформируемого слоя H (см. рис. 6.27) принимается до кровли малосжимаемого грунта (см. п. 5.1), а при ширине (диаметре) фундамента b > 10 м и среднем значении модуля деформации грунтов основания E > 10 МПа вычисляется по формуле
где H0 и ψ — принимаются соответственно равными для оснований, сложенных пылевато-глинистыми грунтами 9 м и 0,15, а сложенных песчаными грунтами 6 м и 0,1; kp — коэффициент, принимаемый; kp = 0,8 при среднем давлении под подошвой фундамента p = 100 кПа; kp = 1,2 при р = 500 кПа; при промежуточных значениях — по интерполяции.
Если основание сложено и пылевато-глинистыми, и песчаными грунтами, значение Н определяется по формуле
где Нs — толщина слоя, вычисленная по формуле (5.62) в предположении, что основание сложено только песчаными грунтами; hci — суммарная толщина слоев пылевато-глинистых грунтов в пределах от подошвы фундамента до глубины Hci равной значению Н , вычисленному по формуле (5.62) в предположении, что основание сложено только пылевато-глинистыми грунтами.
ТАБЛИЦА 5.19. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА k
ζ = 2z/b | k для фундаментов | |||||||
круглых | прямоугольных с соотношением сторон η = l/b | ленточных ( η ≥ 10) | ||||||
1 | 1,4 | 1,8 | 2,4 | 3,2 | 5 | |||
0,0 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 |
0,4 | 0,090 | 0,100 | 0,100 | 0,100 | 0,100 | 0,100 | 0,100 | 0,104 |
0,8 | 0,179 | 0,200 | 0,200 | 0,200 | 0,200 | 0,200 | 0,200 | 0,208 |
1,2 | 0,266 | 0,299 | 0,300 | 0,300 | 0,300 | 0,300 | 0,300 | 0,311 |
1,6 | 0,348 | 0,380 | 0,394 | 0,397 | 0,397 | 0,397 | 0,397 | 0,412 |
2,0 | 0,411 | 0,446 | 0,472 | 0,482 | 0,486 | 0,486 | 0,486 | 0,511 |
2,4 | 0,461 | 0,499 | 0,538 | 0,556 | 0,565 | 0,567 | 0,567 | 0,605 |
2,8 | 0,501 | 0,542 | 0,592 | 0,618 | 0,635 | 0,640 | 0,640 | 0,687 |
3,2 | 0,532 | 0,577 | 0,637 | 0,671 | 0,696 | 0,707 | 0,709 | 0,763 |
3,6 | 0,558 | 0,606 | 0,676 | 0,717 | 0,750 | 0,768 | 0,772 | 0,831 |
4,0 | 0,579 | 0,630 | 0,708 | 0,756 | 0,796 | 0,820 | 0,830 | 0,892 |
4,4 | 0,596 | 0,650 | 0,735 | 0,789 | 0,837 | 0,867 | 0,883 | 0,949 |
4,8 | 0,611 | 0,668 | 0,759 | 0,819 | 0,873 | 0,908 | 0,932 | 1,001 |
5,2 | 0,624 | 0,683 | 0,780 | 0,834 | 0,904 | 0,948 | 0,977 | 1,050 |
5,6 | 0,635 | 0,697 | 0,798 | 0,867 | 0,933 | 0,981 | 1,018 | 1,095 |
6,0 | 0,645 | 0,708 | 0,814 | 0,887 | 0,958 | 1,011 | 1,056 | 1,138 |
6,4 | 0,653 | 0,719 | 0,828 | 0,904 | 0,980 | 1,031 | 1,090 | 1,178 |
6,8 | 0,661 | 0,728 | 0,841 | 0,920 | 1,000 | 1,065 | 1,122 | 1,215 |
7,2 | 0,668 | 0,736 | 0,852 | 0,935 | 1,019 | 1,088 | 1,152 | 1,251 |
7,6 | 0,674 | 0,744 | 0,863 | 0,948 | 1,036 | 1,109 | 1,180 | 1,285 |
8,0 | 0,679 | 0,751 | 0,872 | 0,960 | 1,051 | 1,128 | 1,205 | 1,316 |
8,4 | 0,684 | 0,757 | 0,881 | 0,970 | 1,065 | 1,146 | 1,229 | 1,347 |
8,8 | 0,689 | 0,762 | 0,888 | 0,980 | 1,078 | 1,162 | 1,251 | 1,376 |
9,2 | 0,693 | 0,768 | 0,896 | 0,989 | 1,089 | 1,178 | 1,272 | 1,404 |
9,6 | 0,697 | 0,772 | 0,902 | 0,998 | 1,100 | 1,192 | 1,291 | 1,431 |
10,0 | 0,700 | 0,777 | 0,908 | 1,005 | 1,110 | 1,205 | 1,309 | 1,456 |
11,0 | 0,705 | 0,786 | 0,922 | 1,022 | 1,132 | 1,233 | 1,349 | 1,506 |
12,0 | 0,710 | 0,794 | 0,933 | 1,037 | 1,151 | 1,257 | 1,384 | 1,550 |
Примечание. При промежуточных значениях ζ и η коэффициент k определяется по интерполяции.
Значение Н , найденное по формулам (5.62) и (5.63), должно быть увеличено на толщину слоя грунта с модулем деформации E H и толщина его не превышает 0,2 H . При большей толщине слоя такого грунта, а также если лежащие выше слои имеют модуль деформации E р = 0,3 МПа, если плита опирается на слой песка толщиной 5 м с модулем деформации E = 30 МПа, который подстилается моренным суглинком, имеющим Е = 40 МПа.
Решение. Расчетную толщину слои определяем но формуле (5.62) для двух случаев: основание сложено только песчаными и только пылевато-глинистыми грунтами (при р = 0,3 МПа коэффициент kр = 1):
Тогда по формуле (5.63)
H = 8 + 7/3 = 10,3 м ≈ 10 м.
При ζ´ = 2 · 10/20 = 1 по табл. 5.17 kc = 1,4; при Е > 10 МПа и b > 15 м по табл. 5.18 коэффициент km = 1,5.
Определяем коэффициенты ki по табл. 5.19, учитывая, что η = 100/20 = 5:
Тогда по формуле (5.61)
м = 4 см.
Осадки центра, середин сторон и угловых точек прямоугольной площади размером b×l при действии на нее равномерного давления р определяются по формуле [2]:
где E — модуль деформации грунта основания, принимаемый средним в пределах сжимаемой толщи; k´ = k0 коэффициент, принимаемый по табл. 5.20 для центра прямоугольника; k´ = k1 — то же, для середины большей стороны; k´ = k2 — то же, для середины меньшей стороны; k´ = k3 — то же, для угловой точки.
Осадки поверхности основания при действии на него равномерного давления р по круглой площадке радиусом r на расстоянии R от центра этой площадки также можно определить по формуле (5.64), в которой коэффициент k´ = kr принимается по табл. 5.21 [2]. Указанным способом допускается определять осадки поверхности основания за пределами жесткого круглого фундамента.
Влияние на осадку рассчитываемого фундамента других фундаментов, нагрузок на полы и т.п. может быть оценено по формуле (5.64) с использованием схемы фиктивных фундаментов аналогично определению напряжений в основании методом угловых точек либо с помощью ЭВМ по стандартной программе. Дополнительную осадку рассчитываемого фундамента от влияния других фундаментов допускается принимать равной дополнительной осадке его центра.
ТАБЛИЦА 5.20. ЗНАЧЕНИЯ КОЭФФИЦИЕНТОВ k0, k1, k2, k3
η | ζ´ = 2H/b | k0 | k1 | k2 | k3 | η | ζ´ = 2H/b | k0 | k1 | k2 | k3 |
1 | 0,2 0,5 1 2 3 5 7 10 | 0,091 0,236 0,464 0,701 0,801 0,892 0,928 0,955 | 0,045 0,109 0,236 0,436 0,482 0,564 0,601 0,628 | 0,045 0,109 0,236 0,436 0,482 0,564 0,601 0,628 | 0,024 0,056 0,115 0,231 0,305 0,380 0,416 0,444 | 3 | 0,2 0,5 1 2 3 5 7 10 | 0,091 0,227 0,464 0,801 1,019 1,238 1,338 1,420 | 0,045 0,109 0,227 0,464 0,655 0,855 0,955 1,037 | 0,045 0,107 0,225 0,400 0,510 0,656 0,742 0,815 | 0,024 0,056 0,115 0,231 0,325 0,460 0,545 0,617 |
1,5 | 0,2 0,5 1 2 3 5 7 10 | 0,091 0,227 0,464 0,773 0,910 1,037 1,092 1,137 | 0,045 0,109 0,236 0,446 0,564 0,682 0,737 0,783 | 0,045 0,108 0,231 0,404 0,508 0,617 0,669 0,712 | 0,024 0,056 0,115 0,231 0,323 0,426 0,478 0,518 | 5 | 0,2 0,5 1 2 3 5 7 10 | 0,091 0,227 0,454 0,801 1,028 1,310 1,456 1,592 | 0,045 0,109 0,227 0,464 0,655 0,919 1,065 1,192 | 0,045 0,107 0,225 0,400 0,511 0,656 0,752 0,852 | 0,024 0,056 0,115 0,231 0,326 0,462 0,555 0,652 |
2 | 0,2 0,5 1 2 3 5 7 10 | 0,091 0,227 0,464 0,792 0,974 1,128 1,201 1,265 | 0,045 0,109 0,227 0,464 0,610 0,755 0,837 0,883 | 0,044 0,107 0,225 0,403 0,514 0,641 0,708 0,762 | 0,024 0,056 0,115 0,231 0,324 0,448 0,512 0,565 | 10 | 0,2 0,5 1 2 3 5 7 10 | 0,091 0,227 0,464 0,801 1,028 1,319 1,492 1,702 | 0,045 0,109 0,227 0,464 0,655 0,928 1,110 1,310 | 0,045 0,107 0,225 0,400 0,511 0,658 0,756 0,858 | 0,024 0,056 0,115 0,231 0,326 0,463 0,558 0,659 |
ТАБЛИЦА 5.21. ЗНАЧЕНИЕ КОЭФФИЦИЕНТА kr
ζ´ = H/r | kr при ρ = R/r | |||||||||||
0 | 0,25 | 0,5 | 0,75 | 1 | 1,25 | 1,5 | 2 | 2,5 | 3 | 4 | 5 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0,25 | 0,12 | 0,12 | 0,12 | 0,12 | 0,05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0,5 | 0,24 | 0,24 | 0,23 | 0,22 | 0,11 | 0,01 | 0 | 0 | 0 | 0 | 0 | 0 |
0,75 | 0,35 | 0,35 | 0,34 | 0,29 | 0,16 | 0,03 | 0,01 | 0 | 0 | 0 | 0 | 0 |
1 | 0,45 | 0,44 | 0,42 | 0,35 | 0,21 | 0,07 | 0,02 | 0 | 0 | 0 | 0 | 0 |
1,5 | 0,58 | 0,57 | 0,53 | 0,45 | 0,28 | 0,13 | 0,07 | 0,02 | 0 | 0 | 0 | 0 |
2 | 0,65 | 0,64 | 0,60 | 0,52 | 0,34 | 0,17 | 0,10 | 0,04 | 0,01 | 0 | 0 | 0 |
3 | 0,74 | 0,73 | 0,68 | 0,59 | 0,41 | 0,23 | 0,16 | 0,08 | 0,04 | 0,02 | 0 | 0 |
5 | 0,81 | 0,79 | 0,74 | 0,66 | 0,47 | 0,30 | 0,22 | 0,13 | 0,09 | 0,06 | 0,02 | 0,01 |
7 | 0,84 | 0,82 | 0,77 | 0,69 | 0,50 | 0,33 | 0,24 | 0,15 | 0,11 | 0,08 | 0,04 | 0,02 |
10 | 0,85 | 0,83 | 0,79 | 0,71 | 0,52 | 0,35 | 0,27 | 0,18 | 0,13 | 0,10 | 0,06 | 0,04 |
∞ | 0,91 | 0,89 | 0,84 | 0,76 | 0,58 | 0,40 | 0,32 | 0,23 | 0,18 | 0,15 | 0,11 | 0,09 |
ТАБЛИЦА 5.22. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ω
Форма загруженной площади | η | ω для определения | |||
осадки равномерно загруженной площади | осадки абсолютно жесткого фундамента ωconst | ||||
в угловой точке ωc | в центре ω0 | в средней ωm | |||
Прямоугольная | 1 | 0,5 ω0 | 1,12 | 0,95 | 0,88 |
1,5 | 1,36 | 1,15 | 1,08 | ||
2 | 1,53 | 1,30 | 1,22 | ||
3 | 1,78 | 1,53 | 1,44 | ||
4 | 1,96 | 1,70 | 1,61 | ||
5 | 2,10 | 1,83 | 1,72 | ||
6 | 2,23 | 1,96 | 1,83 | ||
7 | 2,33 | 2,04 | 1,92 | ||
8 | 2,42 | 2,12 | 2,00 | ||
9 | 2,49 | 2.19 | 2,06 | ||
10 | 2,53 | 2,25 | 2,12 | ||
Круглая | – | 0,64 | 1,00 | 0,85 | 0,79 |
Определение осадки путем непосредственного применения теории линейно-деформируемой среды. Для предварительной оценки осадок фундаментов допускается пользоваться формулой
где ω — коэффициент, принимаемый по табл. 5.22; v — коэффициент Пуассона.
Во всех случаях формула (5.65) приводит к преувеличению расчетных осадок (по сравнению с методами, рекомендуемыми нормами). Достаточно удовлетворительные результаты эта формула дает при ширине фундамента b η = l/b
Сорочан Е.А. Основания, фундаменты и подземные сооружения
Источник