- 5.5.3. Определение основных размеров фундаментов (ч. 3)
- Б. ВНЕЦЕНТРЕННО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ
- 5.5.3. Определение основных размеров фундаментов (ч. 2)
- А. ЦЕНТРАЛЬНО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ
- ТАБЛИЦА 5.15. ЗНАЧЕНИЕ k´d ДЛЯ ПРЕРЫВИСТОГО ФУНДАМЕНТА
- Расчёт и конструирование отдельно стоящих центрально нагруженных фундаментов
5.5.3. Определение основных размеров фундаментов (ч. 3)
Б. ВНЕЦЕНТРЕННО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ
Размеры внецентренно нагруженных фундаментов определяются исходя из условий:
где р — среднее давление под подошвой фундамента от нагрузок для расчета оснований по деформациям; pmax — максимальное краевое давление под подошвой фундамента; р c max — то же, в угловой точке при действии моментов сил в двух направлениях; R — расчетное сопротивление грунта основания.
Максимальное и минимальное давления под краем фундамента мелкого заложения при действии момента сил относительно одной из главных осей инерции площади подошвы определяется по формуле
где N — суммарная вертикальная нагрузка на основание, включая вес фундамента и грунта на его обрезах, кН; A — площадь подошвы фундамента, м 2 ; Мх — момент сил относительно центра подошвы фундамента, кН·м; y — расстояние от главной оси инерции, перпендикулярной плоскости действия момента сил, до наиболее удаленных точек подошвы фундамента, м; Ix — момент инерции площади подошвы фундамента относительно той же оси, м 4 .
Для прямоугольных фундаментов формула (5.53) приводится к виду
где Wx — момент сопротивления подошвы, м 3 ; ex = Mx/N — эксцентриситет равнодействующей вертикальной нагрузки относительно центра подошвы фундамента, м; l — размер подошвы фундамента в направлении действия момента, м.
При действии моментов сил относительно обеих главных осей инерции давления в угловых точках подошвы фундамента определяется по формуле
или для прямоугольной подошвы
где Мх, My, Iх, Iy, ex, ey, x, у — моменты сил, моменты инерции подошвы эксцентриситеты и координаты рассматриваемой точки относительно соответствующих осей; l и b — размеры подошвы фундамента.
Условия (5.50)—(5.52) обычно проверяются для двух сочетаний нагрузок, соответствующих максимальным значениям нормальной силы или момента.
Относительный эксцентриситет вертикальной нагрузки на фундамент ε = е/l рекомендуется ограничивать следующими значениями:
εu = 1/10 — для фундаментов под колонны производственных зданий с мостовыми кранами грузоподъемностью 75 т и выше и открытых крановых эстакад с кранами грузоподъемностью более 15 т, для высоких сооружений (трубы, здания башенного типа и т.п.), а также во всех случаях, когда расчетное сопротивление грунтов основания R εu = 1/6 — для остальных производственных зданий с мостовыми кранами и открытых крановых эстакад;
εu = 1/4 — для бескрановых зданий, а также производственных зданий с подвесным крановым оборудованием.
Форма эпюры контактных давлений под подошвой фундамента зависит от относительного эксцентриситета (рис. 5.25): при ε ε = 1/10, соотношение краевых давлений pmin/pmax = 0,25), при ε = 1/6 — треугольная с нулевой ординатой у менее загруженной грани подошвы, при ε > 1/6 — треугольная с нулевой ординатой в пределах подошвы, т.е. при этом происходит частичный отрыв подошвы.
В последнем случае максимальное краевое давление определяется по формуле
где b — ширина подошвы фундамента; l0 = l /2 – e — длина зоны отрыва подошвы (при ε = 1/4, l0 = 1,4).
Следует отметить, что при отрыве подошвы крен фундамента нелинейно зависит от момента.
Распределение давлений по подошве фундаментов, имеющих относительное заглубление λ = d/l > 1, рекомендуется находить с учетом бокового отпора грунта, расположенного выше подошвы фундамента. При этом допускается применять расчетную схему основания, характеризуемую коэффициентом постели (коэффициентом жесткости). В этом случае краевые давления под подошвой вычисляются по формуле
где id — крен заглубленного фундамента; ci — коэффициент неравномерного сжатия.
Пример 5.11. Определить размеры фундамента для здания гибкой конструктивной схемы без подвала, если вертикальная нагрузка на верхний обрез фундамента N = 10 МН, момент M = 8 МН·м, глубина заложения d = 2 м. Грунт — песок средней крупности со следующими характеристиками, полученными по испытаниям: е = 0,52; φII = 37°; cII = 4 кПа; γ = 19,2 кН/м 3 . Предельное значение относительного эксцентриситета εu = е/l = 1/6.
Решение. По табл. 5.13 R0 = 500 кПа. Предварительные размеры подошвы фундамента определим исходя из требуемой площади:
м 2 .
Принимаем b · l = 4,2 · 5,4 м ( A = 22,68 м 2 ).
Расчетное сопротивление грунта по формуле (5.29) R = 752 кПа. Максимальное давление под подошвой
кПа R = 900 кПа.
Эксцентриситет вертикальной нагрузки
м,
Таким образом, принятые размеры фундамента удовлетворяют условиям, ограничивающим краевое давление и относительный эксцентриситет нагрузки.
Сорочан Е.А. Основания, фундаменты и подземные сооружения
Источник
5.5.3. Определение основных размеров фундаментов (ч. 2)
А. ЦЕНТРАЛЬНО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ
Проектирование фундаментов из сборных плит. Для устройства фундаментов применяются плиты, прямоугольные в плане, и с угловыми вырезами (см. гл. 4). Фундаменты из этих плит проектируются ленточными или прерывистыми, последние с превышением или без превышения расчетного сопротивления основания.
При ленточных фундаментах, когда ширина плит совпадает с расчетной шириной, допускается замена прямоугольных плит плитами с угловыми вырезами. При прерывистых фундаментах расчетное сопротивление грунтов основания R определяется как для ленточных фундаментов с повышением значения R коэффициентом kd , принимаемым по табл. 5.14.
Прерывистые фундаменты из плит прямоугольной формы и с угловыми вырезами не рекомендуется применять:
- – в грунтовых условиях II типа по просадочности;
- – при залегании под подошвой фундамента рыхлых песков;
- – при сейсмичности района 7 баллов или более; в этом случае нужно применять плиты с угловыми вырезами, укладывая их в виде непрерывной ленты;
- – при залегании ниже подошвы фундамента пылевато-глинистых грунтов с показателем текучести IL > 0,5.
Прерывистые фундаменты с превышением расчетного сопротивления основания не рекомендуется устраивать:
- – в грунтовых условиях I типа по просадочности при отсутствии поверхностного уплотнения грунта в пределах деформируемой зоны;
- – при неравномерном напластовании грунтов или при значительном изменении сжимаемости грунта в пределах здания или сооружения;
- – при сейсмичности 6 баллов.
При совпадении расчетной ширины фундамента с шириной плит последние укладываются в виде непрерывной ленты. Это требование относится как к плитам прямоугольной формы, так и к плитам с угловыми вырезами. В этом случае расчетное сопротивление грунта основания R , вычисленное по формуле (5.29), может быть повышено в 1,2 раза, если расчетные деформации основания (при давлении, равном R ) не превосходят 40 % их предельного значения. При этом повышенное давление не должно вызывать деформации основания более 50 % предельных и, кроме того, не превышать значение давления из условия расчета оснований по несущей способности.
При несовпадении расчетной ширины с шириной плиты проектируются прерывистые фундаменты. Для прерывистых фундаментов, проектируемых с превышением расчетного сопротивления основания, коэффициент kd не должен превышать величин, приведенных в табл. 5.14, а для прямоугольной формы, кроме того, коэффициент k´d не должен быть больше значений, приведенных в табл. 5.15.
ТАБЛИЦА 5.15. ЗНАЧЕНИЕ k´d ДЛЯ ПРЕРЫВИСТОГО ФУНДАМЕНТА
Расчетная ширина ленточного фундамента, м | Ширина прерывистого фундамента, м | |
1 | 1,2 | 1,09 |
1,1 | 1,2 | 1,1 |
1,3 | 1,4 | 1,07 |
1,5 | 1,6 | 1,11 |
1,7 | 2 | 1,18 |
1,8 | 2 | 1,17 |
1,9 | 2 | 1,09 |
2,1 | 2,4 | 1,18 |
2,2 | 2,4 | 1,13 |
2,3 | 2,4 | 1,1 |
2,5 | 2,8 | 1,17 |
2,6 | 2,8 | 1,13 |
2,7 | 2,8 | 1,12 |
2,9 | 3,2 | 1,15 |
3,0 | 3,2 | 1,13 |
3,1 | 3,2 | 1,1 |
В случае применения плит с угловыми вырезами в ленточных фундаментах и в прерывистых без превышения расчетного сопротивления основания допускается, чтобы фактическое давление на грунт превышало расчетное сопротивление основания на 15 %, т.е. kd = 1,15.
Осадка ленточных и прерывистых фундаментов рассчитывается как для сплошного ленточного фундамента на среднее давление, отнесенное к общей площади фундамента, включая промежутки между плитами и угловые вырезы.
Пример 5.10. Рассчитать фундамент под стену производственного здания без подвала.
1. Исходные данные: длина стены по оси А равна 40 м; толщина фундаментной стены 30 см; глубина заложения фундамента 2 м; площадка сложена глинистым грунтом, имеющим характеристики: IL = 0,3, е = 0,8, γII = 18 кН/м 3 , cII = 35 кПа, R0 = 317 кПа, φII = 16°; нагрузка на уровне верха фундамента N = 856 кН/м.
Решение. Предварительный размер подошвы фундамента b = N/R0 = 856/317 = 2,7 м. Расчетное сопротивление грунта основания определяем по формуле (5.29):
кПа.
Ширина фундамента bc = (N + N1)/R = (856 + 114)/349 = 2,78 (здесь N1 = 114 кН/м — вес фундамента и грунта на его обрезах). Расчетная ширина фундамента практически совпадает с шириной блока, равной 2,8 м, поэтому применяем ленточный фундамент из плит с вырезами марки ФК 28-35В*. Число плит n = Lbc/As = 40 · 2,78/(2,8 · 1,18) = 25 шт. В этом случае расход бетона составляет 31,75 м 3 , а металла – 1,041 т.
При применении типовых плит по серии 1.112-5 принимаем марку ФЛ 28.12-3. В этом случае расход бетона составляет 34,22 м 3 , а металла — 1,347 т (т.е. больше соответственно в 1,08 и 1,29 раза).
2. Исходные данные: длина стены того же здания, что и в п. 1, по оси Б равна 40 м, нагрузка на уровне верха фундамента N = 410 кН/м, расчетное сопротивление грунта основания R = 222 кПа, расчетная ширина фундамента bc = (410 + 90)/222 = 2,25 м (здесь N1 = 90 кН/м), среднее давление p = 222 кПа.
Решение. Принимаем прерывистый фундамент из плит прямоугольной формы шириной 2,4 м. Коэффициент превышения расчетного сопротивления в этом случае k´d = 1,13 (см. табл. 5.15), а коэффициент kd = 1,3 (см. табл. 5.14). Число плит прямоугольной формы определяем по наименьшему из этих коэффициентов. Площадь ленточного фундамента A = 2,25 · 40 = 90 м 2 . Суммарная площадь прямоугольник плит в прерывистом фундаменте Ab = 90/1,13 = 80 м 2 . Число плит в прерывистом фундаменте
Отсюда n = 80/2,83 = 28 шт. (площадь плиты As = 2,4 · 1,18 = 2,83 м 2 ).
Источник
Расчёт и конструирование отдельно стоящих центрально нагруженных фундаментов
Общие положения. В общем случае размеры подошвы фундамента назначают согласно требованиям норм проектирования оснований зданий и сооружений, рассчитывая основания по несущей способности и по деформациям, что изложено в курсе оснований и фундаментов. Допускается предварительно определять размеры подошвы фундаментов зданий классов I и II, а также окончательно их назначать для фундаментов зданий и сооружений класса III при основаниях, сжимаемость которых не увеличивается с глубиной, из условия, что среднее давление на основание под подошвой фундамента не превышает значения, вычисляемого по расчетному давлению Rо, фиксированному для фундаментов шириной 1 м на глубине 2 м.
Расчетное давление Ro зависит от вида и состояния грунта; его принимают по результатам инженерно-геологических изысканий площадки строительства и по указаниям норм.
Для окончательного назначения размеров фундамента расчетное давление на грунт основания R определяют по формулам: при d ≤ 2 м
где b и d — соответственно ширина и глубина заложения проектируемого фундамента, м; b0 = 1 м; d0 = 2 м; γ — нагрузка от веса 1 м 3 грунта, расположенного выше подошвы фундамента, кН/м 3 ; k1 = 0,125 — коэффициент, принимаемый для оснований, сложенных крупнообломочными и песчаными грунтами; k1 = 0,05 — то же, пылеватыми песками, супесями, суглинками и глинами; k2 = 0,25 — коэффициент, принимаемый для оснований, сложенных крупнообломочными и песчаными грунтами; k2=0,2 — то же, супесями и суглинками; k2 =0,15 —то же, глинами.
Опыты показали, что давление на основание по подошве фундамента в общем случае распределяется неравномерно в зависимости от жесткости фундамента, свойств грунта, интенсивности среднего давления. При расчетах условно принимают, что оно распределено равномерно.
Давление на грунт у края фундамента, загруженного внецентренно в одном направлении, не должно превышать 1,2R, а в углу, при двухосном внецентренном загружении, — 1,5R.
Размеры сечения фундамента и его армирование определяют как из расчета прочности на воздействия, вычисленные при нагрузках и сопротивлении материалов по первой группе предельных состояний.
Центрально-нагруженные фундаменты. Необходимая площадь подошвы центрально-нагруженного фундамента (рис. 12.7) при предварительном расчете
где Nn — нормативная сила, передаваемая фундаменту; d —глубина заложения фундамента; γm = 20 кН/м 3 — усредненная нагрузка от веса 1 м 3 фундамента и грунта на его уступах.
Если нет особых требований, то центрально-нагруженные фундаменты делают квадратными в плане или близкими к этой форме.
Минимальную высоту фундамента с квадратной подошвой определяют условным расчетом его прочности на продавливание в предположении, что оно может происходить по поверхности пирамиды, боковые стороны которой начинаются у колонн и наклонены под углом 45°. Это условие выражается формулой (для тяжелых бетонов)
где Rbt — расчетное сопротивление бетона при растяжении; ит = 2(hk + bk + 2ho)—среднее арифметическое между периметрами верхнего и нижнего оснований пирамиды продавливания в пределах полезной высоты фундамента h0.
Продавливающую силу принимают согласно расчету по первой группе предельных состояний на уровне верха фундамента за вычетом давления грунта по площади основания пирамиды продавливания:
В формуле (12.4) нагрузка от веса фундамента и грунта на нем не учитывается, так как он в работе фундамента на продавливание не участвует. Полезная высота фундамента может быть вычислена по приближенной формуле, выведенной на основании выражений (12.3) (12.4):
Фундаменты с прямоугольной подошвой рассчитывают на продавливание также по условию (12.3), принимая
где А2 — площадь заштрихованной части подошвы на рис. 12.7; b1 и b2 — соответственно верхняя и нижняя стороны одной грани пирамиды продавливания.
Полную высоту фундамента и размеры верхних ступеней назначают с учетом конструктивных требований, указанных выше.
Внешние части фундамента под действием реактивного давления грунта снизу работают подобно изгибаемым консолям, заделанным в массиве фундамента. Их расчитывают в сечениях: /—/ — по грани колонны, //—// — по грани верхней ступени, III—/// — по границе пирамиды продавливания.
Полезную высоту нижней ступени принимают такой, чтобы она отвечала условию прочности по поперечной силе без поперечного армирования в наклонном сечении, начинающемся в сечении ///—III (на основании формул гл. 3). Для единицы ширины этого сечения
где на основании рис. 12.7
Кроме того, полезная высота нижней ступени должна быть проверена по прочности на продавливание по условию (12.3).
Армирование фундамента по подошве определяют расчетом на изгиб по нормальным сечениям /—/ и II—II. Значение расчетных изгибающих моментов в этих сечениях
Сечение рабочей арматуры на всю ширину фундамента можно вычислить, принимая
Содержание арматуры в расчетном сечении должно обеспечивать минимально допустимый процент армирования в изгибаемых элементах.
При прямоугольной подошве сечение арматуры фундамента определяют расчетом в обоих направлениях.
7. Нормативные и расчётные нагрузки.
Нормативные нагрузки. Они устанавливаются нормами по заранее заданной вероятности превышения средних значений или по номинальным значениям. Нормативные постоянные нагрузки принимают по проектным значениям геометрических и конструктивных параметров и по средним значениям плотности. Нормативные временные технологические и монтажные нагрузки устанавливают по наибольшим значениям, предусмотренным для нормальной эксплуатации; снеговые и ветровые – по средним из ежегодных неблагоприятных значений или по неблагоприятным значениям, соответствующим определенному среднему периоду их повторений.
Расчетные нагрузки. Их значения при расчете конструкций на прочность и устойчивость определяют умножением нормативной нагрузки на коэффициент надежности по нагрузке .
Коэффициент надежности при действии веса бетонных и железобетонных конструкций = 1,1;
веса конструкций из бетонов на легких заполнителях и различных стяжек, засыпок, утеплителей, выполняемых в заводских условиях = 1,2 и на монтаже = 1,3;
различных временных нагрузок в зависимости от их значения — при полном нормативном значении менее 2,0 кПа = 1,3, при полном нормативном значении 2,0 кПа и более = 1,2. Коэффициент надежности при действии веса конструкций, применяемый в расчете на устойчивость положения против всплытия, опрокидывания и скольжения, а также в других случаях, когда уменьшение массы ухудшает условия работы конструкции, принят =0,9. При расчете конструкций на стадии возведения расчетные кратковременные нагрузки умножают на коэффициент 0,8. При расчете конструкций по деформациям и перемещениям (по 2 группе предельных состояний) расчетные нагрузки принимают равными нормативным значениям с коэффициентом =1
Сочетание нагрузок. Конструкций должны быть рассчитаны на различные сочетания нагрузок или соответствующие им усилия, если расчет ведут по схеме неупругого состояния. В зависимости от состава учитываемых нагрузок различают:
основные сочетания, включающие постоянные, длительные и кратковременные нагрузки или усилия от них;
особые сочетания, включающие постоянные, длительные, возможные кратковременные и одна из особых нагрузки или усилия от них.
В основных сочетаниях при учете не менее двух временных нагрузок их расчетные значения (или соответствующих им усилий) умножают на коэффициенты сочетания равные:
Источник