- Фундаменты высотных зданий
- Как выбирают тип фундамента высотного здания
- Важность геологических изысканий
- Типы фундаментов
- Плитные фундаменты
- Свайные фундаменты
- Комбинированные фундаменты
- Теория и практика
- На что следует обратить внимание при устройстве фундамента
- Поиск новых путей
- Секрет устойчивости небоскребов
- Фундамент небоскреба
- Стальной скелет высотной конструкции
- Маятниковый баланс
- Проектирование высотных зданий — специфика
- ГЕОЛОГИЯ И ГРУНТЫ
- АЭРОДИНАМИКА
- РАЦИОНАЛЬНЫЕ ОБЪЕМНО-ПРОСТРАНСТВЕННЫЕ РЕШЕНИЯ
- РАЦИОНАЛЬНЫЕ ПЛАНИРОВОЧНЫЕ РЕШЕНИЯ
- КОНСТРУКТИВНЫЕ РЕШЕНИЯ
- НЕСУЩИЕ КОНСТРУКЦИИ НАЗЕМНОЙ ЧАСТИ
- МАТЕРИАЛЫ
- ОГРАЖДАЮЩИЕ КОНСТРУКЦИИ
Фундаменты высотных зданий
Высотные здания строятся уже почти сто лет, однако в мире до сих пор нет их единой чёткой классификации. Если в Нью-Йорке, Токио или Шанхае небоскрёбы возводятся по чисто экономическим причинам (слишком дорогая земля), то в Европе, России или Арабских Эмиратах причины немного другие — тут на первый план выходят личные амбиции или вопрос политического престижа. Можно провести аналогию со знаменитыми сталинскими высотками, самая известная из которых — главное здание МГУ с высотой шпиля 239 метров — почти полвека была самым высоким зданием Европы и попала в книгу рекордов Гиннеса.
Так или иначе, по прогнозам, несколько десятилетий спустя проблема нехватки городского пространства затронет все крупнейшие мегаполисы. Нет ничего удивительного в том, что в центре российской столицы активно застраивается район Москва-Сити, в котором на сегодня возведено уже 20 зданий, чья высота превышает 200 метров. Здания, которые по российской классификации относятся к первой категории ответственности (выше 100 метров) уже есть в Екатеринбурге, Ханты-Мансийске, Новосибирске, Грозном. А в Санкт-Петербурге, невзирая на крайне сложный характер грунтов, возводится грандиозный Охта-центр с расчётной высотой 463 метра. Это здание после окончания строительства сразу на 135 метров превзойдёт московский «Меркурий Сити Тауэр» — самое высокое на сегодня многофункциональное здание в Европе.
Строительство высотных зданий сопряжено со множеством проблем. Но если безопасность надземной части зданий связана с качеством материалов и человеческим фактором, то подземная их часть подвергается гораздо большему числу рисков. Просчитать и предвидеть их все не способен самый мощный терабайтовый компьютер. Поэтому проектирование фундаментов высотных зданий является, пожалуй, самым сложным и ответственным моментом в процессе строительства. От успешного проведения начального этапа работ зависит вся дальнейшая судьба небоскрёба и зданий, расположенных по соседству.
Как выбирают тип фундамента высотного здания
Какие нюансы нужно учитывать при проектировании фундамента высотного здания? Прежде всего, конечно, его высоту и конструктивные особенности. Дом может быть одиночной башней или целой группой зданий разной этажности, объединённых общим стилобатом. Ещё римский архитектор Витрувий две тысячи лет назад заповедовал придерживаться пирамидальной формы высоких зданий.
Естественно, чем выше здание, тем сильнее оно давит на основание фундамента. Общая вертикальная нагрузка может достигать астрономических значений.
Важность геологических изысканий
Такое давление способен выдержать далеко не всякий грунт. Инженерно-геологические изыскания — одно из важнейших подготовительных действий при подготовке проекта строительства высотных зданий. Участок под застройку подвергается ультразвуковому сканированию, в земле пробуриваются скважины глубиной до 100 метров. На разных отметках забираются пробы грунта для определения их состава. Общее правило — чем плотнее и твёрже грунт, тем лучше. Идеальный вариант — устройство фундамента высотного здания в скальном грунте. Плотная порода будет помогать элементам фундамента справляться с вертикальными и горизонтальными нагрузками.
В целом строительство высотных зданий возможно на разных грунтах, от пластичных глинистых до скальных. Однако для каждого вида грунтовых условий необходимо подобрать свой тип фундамента.
Величина вертикальной нагрузки на основание и характеристики грунта — два основных фактора, влияющие на выбор типа фундамента высотного здания. Однако тщательному учёту подвергаются и другие факторы:
- наличие сейсмической активности или напряжений пород природного и техногенного происхождения в регионе строительства;
- присутствие источников грунтовых вод, подземных рек, плывунов, карстовых пустот и других подземных аномалий;
- расположение крупных объектов капитального строительства по соседству;
- проходящие в непосредственной близости транспортные коммуникации, тоннели метро, газо- и водопроводы и другие объекты, которые могут либо повлиять на целостность фундамента, либо пострадать в результате неизбежной усадки грунта;
- климатические факторы — прежде всего сезонные перепады температур, частота гроз и скорость ветра. Его сильные порывы на высоте 300–400 метров, равно как и термическое расширение материалов, а также удары молний могут вызвать весьма ощутимые разовые нагрузки на всю конструкцию здания, в том числе на фундамент.
Типы фундаментов
Проведя всесторонний компьютерный анализ данных инженерных и геологических изысканий, авторы проекта могут выбирать тип фундамента высотного здания. Вот его основные типы:
- Фундамент на естественном основании.
- Свайно-плитный фундамент (СПФ).
- Свайные фундаменты глубокого заложения.
Последний тип фундаментов может устраиваться с выемкой грунта и без неё. В первом случае применяются забивные или вдавливаемые сваи. Во втором — буровые сваи, опускные колодцы-кессоны и полые сваи из стальных труб.
Плитные фундаменты
Фундамент на естественном основании (без забивки свай) подходит для строительства сравнительно невысоких зданий (до 75 м), относящихся ко второй категории ответственности. Как правило, фундамент представлен монолитной железобетонной плитой толщиной от 1 до 2,5 метра. В отдельных случаях, когда отсутствуют или маловероятны риски смещения грунта, возможно применение традиционных ленточных и столбчатых фундаментов. Однако плитный фундамент всё равно считается более предпочтительным. Его применяют и при возведении зданий первой категории ответственности (высотой до 100–120 метров). В местах максимальных нагрузок плита снабжается рёбрами жёсткости. Как правило, это области расположения колонн и пилонов.
Данный вид фундамента применён в сталинских высотках. Там горизонтальная основная плита имеет коробчатое вертикальное усиление по периметру. Такая конструкция за шесть десятков лет вполне доказала свою надёжность, учитывая, что высота семи московских небоскрёбов эпохи СССР превышает 200 метров.
Свайные фундаменты
Современные проектировщики склоняются, однако, к более универсальным свайным или комбинированным конструкциям, предоставляющим возможность строить высотные здания на разных типах грунтов.
При строительстве зданий высотой до 200 метров применяются забивные и задавливаемые сваи сечением 300 x 300 и 350 x 350 мм.
При большей высоте зданий обычно под будущим зданием выкапывается котлован, глубина которого зависит от количества помещений, расположенных по проекту под землёй. В этом случае стены котлована подвергаются дополнительному усилению железобетоном, которое защищает фундамент от горизонтальных нагрузок. Фундаменты глубокого заложения предусматривают применение бетонных и стальных свай диаметром до 2 метров и длиной до 83 метров. Именно такие сваи были применены при строительстве Охта-центра на болотистых грунтах Васильевского острова.
При проходке сверхплотных и скальных грунтов применяются опускные колодцы, которые при достижении необходимой глубины заливаются бетоном, становясь обсадной трубой. Именно такую технологию применяют при строительстве сверхвысоких зданий в ОАЭ и Саудовской Аравии, где под относительно неглубоким слоем песка таятся труднопроходимые скальные породы.
Если в зоне строительства присутствуют подземные воды, используются колодцы-кессоны. Вода выдавливается из них при помощи сжатого воздуха.
Комбинированные фундаменты
Комбинированные свайно-плитные фундаменты являются наиболее сложными в плане монтажа, однако позволяют обеспечить устойчивость высотного здания в условиях разнородных грунтов. Примером может опять-таки служить здание Охта-центра в Северной столице.
Суть технологии состоит в том, что оголовки свай привариваются на дне котлована к балкам бетонного ростверка. В Санкт-Петербурге он двуслойный. Нижняя плита, соединённая со сваями, служит опорой для верхней плиты, служащей непосредственной опорой задания. В результате уменьшается давящий и изгибающий момент в отношений оголовков свай. Кстати, такая же схема применена при устройстве фундаментов ряда высоток Москва-Сити.
Теория и практика
Из-за недостатка практического опыта устройства СПФ высотных зданий данная область пока не отражена в ГОСТах и СНиПах. Строители-практики выработали следующие правила:
- несколько свай большой длины всегда лучше большого количества свай коротких. Чем дальше от края фундамента, тем короче должна быть свая;
- максимальные нагрузки на сваи идут по углам и вообще по периметру здания;
- грунт под плитой должен быть переуплотнён — для этого при разработке котлована производится недобор одного–двух метров грунта, а при устройстве свай делается предварительная скважина на 10 % уже диаметра сваи. Когда свая и плита встают на место, грунт принудительно уплотняется.
Учитывая уникальность высотных зданий первой категории ответственности и несовершенство существующей нормативной базы, при строительстве высотных зданий рекомендуется вести постоянный мониторинг состояния грунтов, свай, ростверка и ограждающих бетонных конструкций.
На что следует обратить внимание при устройстве фундамента
Не следует забывать, что существуют первичная и вторичная усадка грунта. Причём после того, как на фундамент начнёт давить вся тяжесть двухсотметровой высотки, деформация грунта может принять критические значения.
При устройстве свайных и комбинированных фундаментов следует обязательно определять области максимальной вертикальной нагрузки. Это места соприкосновения с фундаментом несущих стен, колонн и пилонов. Если в здании присутствует стилобат, места максимальных нагрузок следует выявлять особенно тщательно.
Поиск новых путей
Помимо классических, прошедших проверку временем фундаментов с вертикальными сваями, появились смелые проекты, предусматривающие диагональное расположение свай. Так, изобретатель Амир Сафин запатентовал проект, в котором свайный фундамент представляет собой горизонтальный ростверк, от которого под разными углами вниз отходят залитые бетоном полые металлические сваи, образующие под землёй гиперболоид вращения (нечто вроде песочных часов). Насколько жизнеспособна такая технология, должно показать время.
На сегодня в мире наиболее распространена технология устройства свайного или свайно-плитного фундамента глубокого заложения с выемкой грунта и монтажом заграждения по периметру («стена в грунте»). Она обеспечивает максимальную устойчивость конструкции и надёжную гидроизоляцию цоколя и подземных помещений и фундамента в целом.
Выбор типа фундамента — один из самых главных пунктов в создании рабочего проекта, если вы заказываете проектирование дома. Инженеры компании ООО «Оклэнд» имеет большой опыт в гражданском и промышленном строительстве. С нами вы можете быть уверены, что ваш дом вашей мечты простоит десятилетия.
Источник
Секрет устойчивости небоскребов
Возведение высотных зданий по уровню сложности сродни полету в космос. Рассмотрим инженерно-конструкторские особенности небоскребов.
Фундамент небоскреба
Для фундамента небоскребов применяют сплошную железобетонную плиту, коробку, сваи, а также их комбинацию. Рассмотрим детально конструкцию несущего основания на примере 462 метровой башни Лахта Центр.
Подземные этажи башни конструктивно образуют коробчатый фундамент, который выполняет функцию равномерного распределения нагрузки с ядра башни на свайное основание. В качестве основания для фундамента используются 264 буронабивные сваи диаметром два метра и глубиной бурения 72 и 82 метра.
На сваях лежит коробка, состоящая из нижней плиты толщиной 3,6 м, верхней плиты толщиной 2,0 м, центрального ядра жесткости диаметром 28,5 м. Совместную работу нижней и верхней плит коробчатого фундамента обеспечивают 10 диафрагм жесткости, расходящиеся от ядра здания в радиальном направлении.
Бетон в нижней и верхней плитах класса по прочности на сжатие В 60, марки по водонепроницаемости W 8, марки по морозостойкости F 150. Бетон в диафрагмах жесткости и стенах ядра в пределах коробчатого фундамента класса по прочности на сжатие В 80, марки по водонепроницаемости и по морозостойкости — W 8 и F 150.
Стальной скелет высотной конструкции
В конце XIX века в строительстве промышленных зданий и вокзалов стали применяться конструкции со стальным каркасом, а в начале XX века с их помощью возводились городские многоэтажки. Металлический каркас обеспечивал устойчивость первых небоскребов. Так, например, каркас Эмпайр-стейт-билдинг состоит из сотен стальных профилей и весит 59 тысяч тонн.
В современных реалиях при строительстве зданий выше 300 метров стальной «скелет» из колонн и балок уже не так эффективен. Архитекторы фирмы Skidmore, Owings and Merrill (SOM) разработали совершенно новую структурную систему высотных зданий – «поддерживаемое ядро». По этой технологии ядро находится в центре, а по сторонам — опоры.
Поддерживаемое ядро лежит в основе структуры почти всех современных сверхвысоких небоскребов, в том числе и 462 — метрового Лахта Центра в Санкт-Петербурге, особенности фундамента которого рассмотрены выше.
Ядро – центральная конструктивная часть небоскреба. Данный железобетонный костяк здания возводится с помощью самоподъемной опалубки. Для бетонирования используется бетон по классу прочности выше, чем в фундаменте, — B 80. Внутри ядра размещаются все инженерные коммуникации — трубы и кабели, а также – вертикальный транспорт. Вокруг ядра собираются этажи полезной площади длиной от ядра до наружного периметра.
Маятниковый баланс
Современные инженеры уравновешивают небоскребы при помощи демпферов — устройств, которые гасят механические колебания постройки.
Источник
Проектирование высотных зданий — специфика
По степени сложности проектирование высотных зданий, а также возведение их превосходят мосты и тоннели, главным образом за счет многократного преобладания высоты над площадью основания, что создает значительные нагрузки на несущие конструкции.
Огромная высота небоскреба приводит к значительно превосходящей типичную для среднеэтажной застройки степени воздействия природных факторов, таких как солнечная радиация и ветровая нагрузка, зачастую превышающая суммарный вес сооружения. Влияние оказывают и общая геологическая ситуация (качество подстилающих грунтов, сейсмическая опасность региона, наличие карстовых разломов), и ряд техногенных факторов (вибрации, шумы, аварии, пожары, диверсионные акты, локальные разрушения). Проектирование высотных зданий – это решение комплекса градостроительных, природно-климатических, геологических, архитектурно-планировочных, конструктивных задач.
Должны быть решены и инженерные вопросы (вентиляция, отопление, водоснабжение, канализация, электрика и системы их управления), вопросы комплексной безопасности проживания, управления и мониторинга конструкций, а также меры, направленные на снижение негативного психологического воздействия на человека.
Каждая высотка сложна и уникальна, и ее сложность возрастает пропорционально ее высоте. В работе над ней принимают участие специалисты из разных областей. Например, в проектировании высотного здания Commerzbank принимали участие свыше 400 исследовательских групп. Основная ответственность ложится на архитекторов, координирующих работу. Поэтому во всем мире при архитектурных школах создаются специальные факультеты, готовящие специалистов по небоскребам. Существуют и проектные организации, специализирующиеся на высотных зданиях, – архитектурные Skidmore, Owings and Merrill, De Stefano and Partners, Foster and Partners, конструкторские Ove Arup and Partners, Thornton Tomasetti Groupe, Cantor Seinuk Group, инженерные RSE Engineering, Flack & Kurtz Consulting Engineers, строительная Turner Construction.
ГЕОЛОГИЯ И ГРУНТЫ
Решение о строительстве высотного здания во многом зависит от качества грунта на участке и его несущей способности. Основной фактор риска в строительстве высоток – оценка несущей способности грунта. При ее анализе и расчете фундаментных плит необходимо учитывать специфику этого типа зданий. Один и тот же грунт в зависимости от неоднородности строения, от технологии возведения может иметь значения «модуля деформации», в 2–5 раз различающиеся между собой. Расчет подземной части высотки выполняется по двум предельным состояниям: по несущей способности и по деформациям (осадкам, кренам, прогибам и т.д.) с учетом принятой технологии возведения. Проектирование фундаментов учитывает особенности грунтов, результаты лабораторных и полевых испытаний, а также обследований окружающей застройки, ее оснований и фундаментов.
По современным способам расчетов основания армирования фундаментной плиты определяется достаточно приблизительно.
В процессе строительства и эксплуатации продолжают измеряться значения контактных напряжений характерных точек, опорных сил, осадки. Если данные не соответствуют рас- четным, то проводится упрочнение грунта. По прогнозам экспертов, развитие геотехнических модельных вычислений, опыт применения эффективных строительных технологий со временем сведут к минимуму риски, связанные с непредсказуемостью поведения грунтов.
АЭРОДИНАМИКА
Можно сказать, что для высотных зданий влияние климата, ветра, изменение атмосферного давления являются экстремальными. До перехода на каркасную систему этой проблемы просто не существовало. Первые кирпичные высотки не были подвержены ветровому воздействию, в отличие от современных сооружений с большими пролетами несущих конструкций, навесными фасадами и предельной высотой.
Изучение воздействия ветра возможно с помощью физического или математического моделирования. Первое осуществляется при испытании в специальных аэродинамических трубах моделей в масштабе от 1:150 до 1:500. Это позволяет определять градостроительно-планировочные недостатки, чрезмерные нагрузки на конструкции, возможные места возникновения вибраций и шумов. Полученные результаты переносятся на реальный объект с корректирующими коэффициентами точности. При математическом моделировании учитываются скорость, направление и характер ветра, а также рельеф местности, плотность окружающей застройки, наличие поблизости леса и объемно-пространственная структура самого здания. Чем больше объектов находится рядом, тем больше высота, на которой достигается максимальная ветровая нагрузка. В области пограничного слоя воздуха скорость ветра может увеличиться в четыре раза. Под пограничным слоем понимается приземной слой атмосферы (в центре городов
460 м), в котором поверхность земли оказывает тормозящее воздействие на движущую массу воздуха, выше его скорость ветра постоянна.
Нагрузки, вызванные воздушными потоками повышенной скорости вокруг здания (турбулентные, круговые восходящие, всасывающие), создают колебания, сравнимые с 4- и даже 5-балльным землетрясением.
Кроме этого возникают неприятные звуки от перекоса конструкций, от проникания таких потоков в оконные щели, а также «завывание» вокруг здания. Наибольшее давление ветра наблюдается в центре вертикальной поверхности с наветренной стороны, где движение ветра практически прекращается. Давление постепенно уменьшается по мере возрастания скорости потока в направлении верха здания. Примерно с середины высоты 40% потоков воздуха начинает движение вниз вдоль фасада. Это может создавать ветровые нагрузки на уровне входа в здание даже большие, чем на высоте 100 м.
Существуют надежные методики учета аэродинамики, следуя которым проектировщик может добиться снижения ветровых нагрузок. Они должны применяться с самого начала проектирования высотных зданий, с постановки сооружения на участке в соответствии с розой ветров, с выбора объемно-пространственного решения.
РАЦИОНАЛЬНЫЕ ОБЪЕМНО-ПРОСТРАНСТВЕННЫЕ РЕШЕНИЯ
Наиболее рациональные формы высоток можно расположить в определенной последовательности, по степени уменьшения воздействия воздушных потоков на их конструкции. Абсолютным лидером является круглый план. Отсутствие выступов позволяет воздуху обтекать объем, не создавая при этом завихрений, появляющихся на углах прямоугольных в плане построек.
Примерами могут служить Marina City в Чикаго или Torre Agbar в Барселоне. Второе место принадлежит планам в форме, производной от круглой, – овальной, в форме линзы или капли. С середины ХХ века все больше высоток имеют подобные планы, что связано с увеличением их высоты, при которой оптимальный объем с точки зрения аэродинамики – не художественный прием, а необходимость. Переходная форма треугольника со скругленными углами чрезвычайно популярна благодаря своей пространственной жесткости. Прекрасный примердля подражания – Commerzbank во Франкфурте.
На третьем месте – столь же распространенные, как и сто лет назад, квадратные или ромбовидные планы. Это решение наиболее популярно для зданий не выше 60 этажей, поскольку они более подвержены горизонтальным нагрузкам. На четвертом месте – высотки, спаренные конструктивно или композиционно. Они, как правило, имеют круглую форму, как, например, Petronas Towers (Башни Петронас) в Куала-Лумпуре. Объединяющий их мост на 42-м этаже является фермой с подпорками, которая работает как стабилизатор колебательных деформаций обеих башен.
При помощи Г- и Н-образного плана можно добиться увеличения показателей прочности и жесткости сооружения. Однако в подобном типе зданий, которые в нашей классификации находятся на пятом месте, приходится размещать несколько лестнично-лифтовых узлов, что снижает выход полезной площади.
Замыкают ряд протяженные здания в виде пластины, дуги или волны. В последнее время, преимущественно в Китае, подобные сооружения делаются жилыми, их высота составляет 40–60 этажей. При этом архитекторам приходится искать альтернативные пути борьбы с воздушными потоками, вызванными огромной парусностью домов.
Стереотипные представления о небоскребах как о прямоугольных башнях, балансирующих на маленьком пятачке, зажатом среди соседних городских кварталов, на сегодня устарели. С тех пор, как высотки перестали быть только офисными зданиями и сделались жилыми домами, гостиницами, многофункциональными комплексами, они значительно расширили свою типологию. Их формы в зависимости от расположения и функции могут быть очень разнообразными – напоминающими парус, огурец, ворота или пагоду-переростка.
Аэродинамические нагрузки и распределение веса конструкций здания по вертикали требуют, как минимум, сохранения конфигурации по всей его высоте. С точки зрения устойчивости сужающаяся кверху форма предпочтительна. В этом случае сооружение занимает весь участок, а затем площадь этажей уменьшается. Это могут быть плавные изменения в силуэте здания по наклонной или дугообразной линии либо скачкообразные, уступчатые формы.
В здании, имеющем форму пирамиды, наклон наружных плоскостей может увеличить жесткость конструкций на 10–50%. Уменьшить ветровую нагрузку можно с помощью переменного расширения и сужения горизонтального сечения здания. В этом случае для потоков воздуха создаются каналы, по которым им легче обтекать объем. Эту роль выполняют сквозные проемы, которые могут располагаться в разных частях здания. В любом случае испытания в аэродинамической трубе проектных моделей подобных сооружений должны проводиться с особой тщательностью, поскольку проемы могут оказывать усиливающее влияние на скорость ветра.
РАЦИОНАЛЬНЫЕ ПЛАНИРОВОЧНЫЕ РЕШЕНИЯ
Вопросы ветровой нагрузки и связанные с ними оптимальные формы высоток неотделимы от их конструктивных решений, от которых зависит и рациональное распределение площадей каждого этажа. В планировке нужно максимально экономно и компактно разместить лестнично-лифтовые узлы. Для определения количества лифтов стоит рассчитать, сколько человек будет ими пользоваться в час пик, ведь максимальное время ожидания кабины может составлять не более 28 секунд. Архитектору также предстоит расположить несущие конструкции с учетом оптимального использования площади, по возможности освободив периметр от массивных элементов.
Конфигурация сооружения, расположение его центрального ядра и соотношение размеров ядра и здания – это базовые параметры в проектировании высотных зданий. Взаимосвязь планировочных, объемных и конструктивных показателей превращает придуманную архитектором форму в работающую схему.
Надежность и безопасность высотного здания зависит от принятых решений по сложнейшей системе, состоящей из подземной (фундаментов, отвечающих за восприятие и передачу суммарных нагрузок от здания на грунтовое основание) и наземной частей.
КОНСТРУКТИВНЫЕ РЕШЕНИЯ
Высотное здание – это вертикальная консоль, жестко закрепленная в фундаменте, поэтомуего надежность гарантирует устойчивость всего сооружения. Суммарная удельная нагрузка на основание может достигать 0,8–1 МПа. Основным правилом для высотных зданий является соблюдение симметричной центрированной нагрузки на фундамент.
В высотном строительстве большое распространение получили следующие фундаменты:
- плитный фундамент. Применяется при хорошей несущей способности грунта и является наиболее экономичным для высотного строительства. Выполняется либо сплошным, монолитным, причем его толщина может доходить до 5 м, либо монолитным железобетонным коробчатым. В Москве особенности грунтов и сложные техногенные условия не позволяют принимать удельные нагрузки на основание под плитными элементами фундамента более 0,4–0,5 МПа;
- свайный фундамент. Применяется при низкой несущей способности грунта. Могут быть применены сваи-стойки или висячие сваи, которые в зависимости от геологии грунтов и нагрузок на основание могут составлять в диаметре 3–4 м, а в некоторых случаях даже 6 м при длине 30–40 м;
- свайно-плитный фундамент. При таком фундаменте расположение и длина свай определяются неравномерностью восприятия нагрузок грунтом, от чего зависит плотность свайного поля и толщина плиты. Кроме того, может быть применен комбинированный фундамент под разные части здания в различных сочетаниях, например: под менее загруженную часть – ленточный, а под ядро –глубокого заложения. При этом необходимо учитывать разность осадки таких фундаментов.
НЕСУЩИЕ КОНСТРУКЦИИ НАЗЕМНОЙ ЧАСТИ
Изначально применялись три основные конструктивные схемы высоток: каркасная, каркасно-ствольная и бескаркасная с параллельными несущими стенами. Со временем было разработано еще несколько типов: каркасная с диафрагмами жесткости, рамно-каркасная, бескаркасная с перекрестно-несущими стенами, ствольная, коробчатая (оболочковая), ствольно-коробчатая («труба в трубе» или «труба в ферме»).
Каркасные и рамно-каркасные системы применяют при высоте здания до 100–150 м. Схемы с перекрестно-несущими стенами, обеспечивающие большую жесткость, могут применяться в строительстве жилых домов и гостиниц до 40 этажей, поскольку им соответствует планировочная структура таких зданий. Стремление к достижению большей жесткости связано с резким увеличением массы сооружений и ограничением планировочных решений.
Для повышения жесткости конструкции и обеспечения свободной планировки применяют ствольные и каркасно-ствольные системы. Стволом, или ядром, как правило, является монолитно выполненный лестнично-лифтовый узел. Данная система обеспечивает необходимую жесткость здания до высоты в 50–60 этажей, поскольку его геометрия зависит от геометрии ядра, предельное соотношение ширины которого к высоте определяется как 1:6 (максимум 1:10). При этом ядро не должно занимать больше 20% от площади этажа.
Ограничение по высоте ствольных систем до 80–90 этажей преодолевается, если в качестве несущей оболочки выступает внешний периметр. Такие системы называются коробчатыми или оболочковыми. В них наружная несущая оболочка может выполняться в виде безраскосной и раскосной решетки из стали или железобетона. Безраскосная решетка не вызывает затруднений при размещении светопрозрачных ограждений по фасаду, но уступает раскосной в обеспечении жесткости конструкции. Диагональные связи-раскосы, образующие ствольно-коробчатые системы «труба в ферме», не позволяют применять пластические решения фасадов и требуют частого расположения несущих стоек по периметру сооружения.
Система «труба в ферме» может эффективно применяться в зданиях свыше 100 этажей.
До высоты в 250–300 м возможна конструкция только с несущим стволом и опирающимися на него аутригерами-консолями (усиленными перекрытиями, способными воспринимать нагрузку от нескольких выше или ниже лежащих уровней и передающих ее на ядро), расположенными каждые 5–20 этажей. В зависимости от схемы аутригеры могут достигать высоты в несколько метров, в этом случае они располагаются в пределах технических этажей. Аутригеры должны быть затянуты в единую систему по периметру здания колоннами, работающими на растяжение, чтобы сократить колебательные ускорения наверху от ветровой нагрузки.
Каждая из схем экономически целесообразна для зданий определенной высоты или соотношения высоты и ширины. Показателем экономической эффективности является расход материала на изготовление несущих конструкций, поделенный на общую площадь. Таким образом, перед конструкторами стоит задача свести к минимуму вес сооружения при обеспечении необходимой надежности. Улучшить условия работы здания под нагрузкой и повысить его жесткость позволяет равномерное распределение вертикальных нагрузок на несущие элементы.
Если необходимость восприятия ветровых нагрузок требует повышения жесткости, сейсмические воздействия, напротив, диктуют повышение его гибкости, чтобы колебания гасились конструкцией без ее разрушения. Гибкость большинства высоток, коэффициент отношения высоты к ширине, обычно 1:8. Большие значения приводят к недопустимым колебаниям верха здания и необходимости использования демпфирующих элементов.
Эти колебания должны быть ограничены по соображениям надежности (не более 0,08 м/с2), а также для обеспечения психологического комфорта. Определить баланс между показателями гибкости и жесткости – еще одна сложность в разработке конструкций высоток. Особые требования к конструктивному решению предъявляют также проблемы безопасности, в частности защиты от прогрессирующего обрушения. Теперь в методиках расчета предусматривается моделирование поведения системы в случае выхода из работы части несущих конструкций, способных повлечь за собой падение всего здания.
МАТЕРИАЛЫ
В строительстве высоток применяют преимущественно сталь и бетон. В начале «эры небоскребов» для каркасных систем использовали металлические колонны и балки. Профильные элементы соединялись при помощи заклепок или болтов в пространственные структуры. Изобретение железобетона в конце XIX века потеснило сталь, но до середины ХХ века нельзя было утверждать, что один материал полностью вытеснил другой. И тот, и другой применялись в строительстве одновременно.
После второй мировой войны все чаще высотные здания стали строить из железобетонных конструкций, которые позволяют механизировать монтажно-строительные процессы, а также разнообразить архитектурный облик сооружений. Они обладают большей огнестойкостью, устойчивостью, обусловленной большим весом, быстрым затуханием колебаний.
Стальные конструкции необходимо защищать от воздействия огня при помощи специальных покрытий или бетона. Благодаря своим характеристикам сталь и бетон могут комбинироваться при учете разницы их свойств. Для высоконагруженных несущих конструкций (колонн, стоек, ригелей) применяют железобетон с жесткой арматурой в виде прокатных профилей, а также комбинированные сталебетонные конструкции.
Использование бетона для подобных целей стимулирует совершенствование этого материала. Разрабатываются новые смеси, обладающие специальными качествами. Созданы бетоны классов В80 и В100, по прочности приближающиеся к стали. Широко применяются более низкие классы высокопрочных бетонов В60 и В70, так как с ростом прочности бетона возрастает его стоимость, повышается хрупкость и снижается огнестойкость. Тем не менее применение высокопрочного бетона и его модификаций позволяет сократить расход арматуры до 35% и обеспечивает набор прочности за двое-трое суток не только в нормальных, но и в зимних условиях без применения электропрогрева. Бетоны высокой консистенции и самоуплотняющиеся бетоны позволяют возводить густоармированные конструкции совершенно без вибрации либо с очень небольшим виброуплотнением.
ОГРАЖДАЮЩИЕ КОНСТРУКЦИИ
Каркасная система, ставшая базовой при строительстве высоток, изменила и принципиальное решение наружных ограждающих конструкций. Толстые массивные стены уступили место легким конструкциям, либо опирающимся на межэтажные перекрытия, либо подвешивающимся к ним и выполняющим только функцию защиты от климатических, атмосферных факторов и обеспечивающим тепловую изоляцию. С развитием фасадных технологий со второй половины ХХ века появилась возможность использовать легкие профильные системы с заполнением панелями из алюминия, специального стекла, полимерных материалов. В современных высотках широко применяют вентилируемые системы, отделанные натуральным или искусственным камнем, декоративными металлическими листами, фибробетонными экранами и другими материалами.
Требования к фасадным системам, предназначенным для высотного домостроения, значительно превосходят требования к ограждающим конструкциям обычных домов, благодаря многократному возрастанию всех видов нагрузок – как динамических, так и климатических. Фасады высоток должны быть воздухо- и паронепроницаемыми, погодостойкими, огнестойкими, технологичными, шумоизоляционными, долговечными и надежными в эксплуатации, ремонтопригодными, а также обладать хорошими теплоизоляционными свойствами, низким коэффициентом температурного расширения и небольшой массой.
Фасадные конструкции должны не только выдерживать прямое давление ветра (до 20–25 м/с), но и сопротивляться усилиям на отрыв, возникающим при движении воздуха вдоль стены и появлении зон отрицательного давления из-за турбулентности. Климатическое воздействие на фасадные системы не ограничивается ветром. В зависимости от климатических условий на конструкции могут оказывать воздействие солнечная радиация, ливневые дожди, грозы и смог.
Фасадные системы постоянно совершенствуются, разрабатываются новые технологии изготовления и монтажа конструкций, материалы (керамика в комбинации с боросиликатным стеклом, панели из металлической пены, нанокомпозиты, стеклянные панели с супергидрофобным самоочищающимся слоем и т.д.).
Совершенствуются и стыковые соединения, узлы крепления и внешний дизайн. Особую роль в истории высотного строительства сыграли светопрозрачные ограждающие конструкции. Возможность сделать максимально прозрачными наружные стены придавала идее сверхвысоких зданий особое значение. Вид с высоты птичьего полета можно было получить, просто сидя в кресле за рабочим столом на 40-м этаже небоскреба.
С развитием конструктивных систем, позволяющих строить все более высокие и сложные структуры с наружными раскосными решетками, ограждающие конструкции вновь стали выполнять несущую функцию. Пространственные стальные и бетонные скелеты с диагональными распорками взяли на себя часть веса здания. При этом стеклянные фасады сохранили за собой главную роль – ограждающей и защищающей сооружение оболочки.
Светопрозрачные системы для высотных зданий проектируются с соблюдением нескольких условий. Профильные несущие элементы для увеличения прочностных качеств и долговечности, как правило, изготавливаются из стали. В светопрозрачном заполнении используются особо прочные, пожаростойкие, низкоэмиссионые и солнцезащитные стекла. Окна традиционной конструкции при использовании в высотных зданиях не обеспечивают требуемого сопротивления воздухопроницанию, поэтому разрабатываются специальные конструкции заполнения световых проемов. Во всем мире широко применяются системы double skin с внешними защитными экранами из особо прочного стекла. Они позволяют делать внутреннее остекление частично или полностью открывающимся. В обычных одинарных фасадах стеклянные конструкции делаются неоткрывающимися из соображений безопасности и из-за сильных воздушных потоков вокруг здания. В них применяют окна с воздухозаборными клапанами.
Источник