Плоская кровля расчет нагрузок

Как рассчитать плоскую кровлю: снеговая и другие виды нагрузок, габариты

Кровельные конструкции с уклоном в пределах 1-11° относятся к плоским и рассчитываются с учетом повышенных требований к надежности, герметичности и изоляционным свойствам.

При простой конфигурации стен и индивидуальном использовании расчет таких крыш при желании выполняется своими силами, после сбора нагрузок и уточнения условий эксплуатации.

Виды нагрузок и расчет

Конструкция воспринимает два основных вида нагрузок: постоянные, включающие собственный вес перекрытия, ограждений и пирога, и временные (снеговая и ветровая нагрузка, вес оборудования, людей и перемещаемых по поверхности объектов). Оба вида учитываются при расчете в комплексе.

В случае стандартной, неэксплуатируемой плоской крыши суммируются:

  • Собственный вес конструкции (соответственно тип и слои пирога должны быть определены заранее).
  • Снеговая и ветровая нагрузка.
  • Вес людей, периодически перемещающихся по кровле с целью ее осмотра и обслуживания. (до 150 кг/м²).
  • Нагрузка от объектов постоянного размещения (антенн, климатического или вентиляционного оборудования).

Непосредственно перед суммированием все собранные нагрузки умножаются на коэф.надежности (см.табл.):

Расчет нагрузок на плоскую крышу усложняется при планировании ее постоянной эксплуатации, а именно – при размещении на ее поверхности:

  • тяжелого оборудования;
  • кафе;
  • клумб;
  • теплиц;
  • спортивных площадок;
  • паркинга.

Так, при размещении на поверхности кровли кафе, ресторанов или мест возможного скопления людей в общей нагрузке прибавляют от 480 кг/м², спортивных или концертных площадок – 360.

Особого внимания требуют крыши, рассчитываемые на интенсивное перемещение транспорта. Помимо сверхвысоких весовых нагрузок (до 25 т/м²) при их проектировании важно исключить или как минимум снизить влияние вибрационных воздействий.

По понятным причинам расчет таких конструкций доверяют профессионалам.

Снеговая

В отличие от крутых скатных конструкций плоские крыши всегда испытывают влияние снеговых нагрузок, без исключений учитываемых при расчете. Точный алгоритм зависит от назначения крыши, но в большинстве случаев пошагово:

    Определяется максимальная высота снежного покрова на плоской крыше и его вес на 1 м².

Данный параметр можно найти опытным путем (измерив высоту снега на соседних плоских крышах в пик снегопадов) или взять из таблиц, после определения климатической зоны региона строительства.

  • Учитывается влияние поправочных коэффициентов. В случае плоской кровли качество и шероховатость покрытий роли не играет, из-за малого значения коэф.уклона приравнивается 1. Снеговая нагрузка полного типа равняется S=Sp, где Sp – табличное значение веса снега на 1 м².
  • Полученное значение умножается на коэф. надежности, в случае снеговой нагрузки равный 1,4.
  • Результаты умножают на площадь плоской крыши с целью определения давления на несущие конструкции дома и самого перекрытия. Значение является ориентировочным и учитывается при проверке несущих способностей плоской крыши, после суммирования с другими нагрузками.
  • Помимо среднего объема выпадаемого снега при расчете данной нагрузки следует учитывать конкретные климатические особенности региона и участка. Особое внимание уделяется влажности и температурным условиям – накапливающий влагу, но не растаявший снег весит в 2-3 раза больше сухого.

    При повышенных требованиях к надежности или неблагоприятных климатических условиях полную снеговую нагрузку находят путем сложения кратковременной (Sp) и длительной (Sp*0,7) нагрузки. Итоговое значение для каждой все также умножается на коэф. надежности – 1,4.

    Помимо прибавления полной снеговой нагрузки к другим полученное значение используется для проверки прочности и несущих способностей самых слабых элементов плоской крыши. В частности, эта величина учитывается:

    • При расчете предельно допустимого прогиба самой конструкции или отдельных элементов у балочных разновидностей. Ярким примером последних служат плоские кровли торговых центров и павильонов.
    • При проверке несущих способностей вертикальных опор перекрытия или основания плоской крыши.
    • При проверке локальной прочности кровельных покрытий. В отличие от скатных конструкций поверхности плоских крыш покрываются мягкими рулонными материалами. При высоком влиянии снеговой нагрузки требования к их прочности, числу слоев или надежности крепления ужесточаются. Особое внимание уделяется участкам примыкания к парапету и нижним локальным зонам.

    Как посчитать габариты крыши?

    Расчет начинается с составления чертежа конструкции, учитывающего точные размеры постройки, требования к парапету, уклону и системе водоотвода.

    При сравнительно небольшой площади крыша закладывается с одним общим уклоном в одну сторону (в идеале – не выходящую на дорожки, террасы или зоны отдыха и учитывающую влияние сильных постоянных ветров).

    На крышах со сложной геометрией стен или большой площадью план разбивается на отдельные участки с треугольной или ромбовидной разуклонкой, отводящей влагу к внутренним узлам водосбора, парапетным воронкам или к тем же наружным сторонам.

    Площадь

    Простая форма поверхности исключает потребность в сложных формулах: площадь плоской кровли находится путем умножения ее длины на ширину. При этом длину наклонной части находят по формуле:

    • Lk – длина горизонтальной части крыши;
    • α – выбранный или расчетный угол наклона.

    Несмотря на небольшую величину последнего пренебрегать им не рекомендуется, допустимая погрешность при расчете габаритов плоской кровли варьируется в пределах ±10 мм, не более.

    Высоту

    При проектировании таких конструкций заранее выбирается способ заложения нужного уклона (от 1,5-3° для эксплуатируемых крыш, 3-6° — зеленых, инверсионных и эксплуатируемых).

    Облегченные балочные виды, конструкции с основаниями из профнастила или заливаемые на месте бетонные перекрытия могут закладывается с нужным углом на этапе строительства, но при работе с готовыми ж/б основаниями отвод влаги чаще обеспечивает разуклонка. Рекомендуем почитать другие наши статьи об устройстве и монтаже плоской крыши своими руками, а том числе по деревянным балкам и на каркасном доме.

    Требуемая высота подъема рассчитывается путем умножения длины ровной горизонтальной части крыши на тангенс угла ее наклона. При необходимости расчета объема раузуклонки (требуемом для получения количества используемых материалов и их веса) используется простая формула:

    V = (a∙b1 + a∙(b2 – b1) / 2)∙с, где

    • а ­ длина основания разреза (она же – ширина крыши);
    • b1 и b2 – мин. и максимальная высота среза (в частном случае b1=0);
    • с – длина конструкции.

    Толщину

    Алгоритм расчета пирога и сечения плоских крыш зависит от способа его обустройства (с размещением утепляющей прослойки под, между и поверх основания) и типа (классического или инверсионного, эксплуатируемого или нет).

    Число и порядок монтажа слоев выбираются заранее и учитываются при выборе высоты возведения парапета (при наличии, расстояние от наружного слоя до края ограждения не может быть меньше нормативного), определении точной весовой нагрузки от пирога, проектировании систем вентилирования и водоотвода.

    Толщину рулонных покрытий, обмазочного слоя или кровельных покрытий указывает производитель, сложить их вместе не составит труда. Основные сложности заключаются при определении числа и толщины каждого слоя, включая дренажные, армирующие, разделительные или пригрузочные. Особое внимание уделяется толщине утепляющей прослойки, обосновываемой теплотехническим расчетом, учитывающим регион строительства и параметры самой теплоизоляции.

    Сечение несущего основания подбирается с учетом суммарных весовых нагрузок и проверяется на прочность на изгиб. Особого внимания требуют конструкции с большой площадью, прогибающиеся посередине или в местах накопления снега. При существенных снеговых или других временных нагрузках они требуют дополнительного укрепления или герметизации.

    Важно! Помимо суммирования толщины всех прослоек на этом этапе проверяется соответствие их характеристики ожидаемым эксплуатационным нагрузкам.

    Сервисы и онлайн-калькуляторы

    Большинство популярных строительных онлайн-калькуляторов (stroy-calc.ru, grandline.ru и аналоги) рассчитывают эту конструкцию как односкатную с минимальным уклоном.

    Такой подход допустим при заложении облегченных пологих конструкций с балочной системой стропил, но для расчета ж/б перекрытий и пирога эксплуатируемых крыш эти сервисы подходят плохо. В то время как профессиональные программы типа ZVsoft с таким задачами справляются лучше, но в онлайн-режиме они работают редко.

    Выбрать схему разуклонки, раскладки утеплителя, рулонных покрытий и крепежей помогают сервисы производителей кровельных материалов для плоских крыш. Примером служат калькуляторы Технониколь nav.tn.ru.

    Из видео узнаете, как сделать расчет ветровой нагрузки на плоскую кровлю с помощью онлайн-калькулятора:

    Заключение

    В заключение стоит отметить, что при проектировании таких конструкций помимо сбора нагрузок и расчета габаритных размеров (в целом простого и практически исключающего ошибки) следует заранее определится со способом обустройства парапета, участков примыкания к вертикальным конструкциям и узлам водосбора.

    При площади крыши более 50 м² в схему вводят дефлекторы для вывода влаги из пирога, в свою очередь нуждающиеся в выборе правильного места установки.

    Источник

    Строительные калькуляторы — ProstoBuild.ru

    Расчет стропильной системы крыши

    Стропильная нога (стропила) – основной элемент стропильной системы. Изготавливают чаще всего из бруса шириной 50-100 мм, высотой 100-200 мм.
    Мауэрлат – элемент стропильной системы, который укладывается на несущие стены и равномерно передает нагрузку от стропильных ног на стены. Сечение мауэрлата чаще всего 100х100, 100х150 либо 150х150 мм.
    Прогон – элемент стропильной системы. Передает нагрузку стропильных ног на стойки, а также обеспечивает дополнительную жесткость стропильной системы. Сечение 100х100, 100х150 либо 100х200 мм.
    Лежень – элемент стропильной системы. Функции лежня схожи с мауэрлатом (это перераспределение точечной нагрузки от стоек/стропильных ног в распределенную нагрузку на несущие стены). Разница в том, что на мауэрлат опираются стропильные ноги, а на лежень – стойки. Сечение 100х100, 100х150 либо 150х150 мм.
    Стойка – вертикальный элемент стропильной системы, служащий для передачи нагрузки от стропильной ноги на лежень. Сечение 100х100, 100х150 мм.
    Подкос – элемент стропильной системы, который служит для подпорки стропильной ноги и снятия с нее части нагрузки. Сечение 100х100, 100х150 мм.
    Затяжка – горизонтальный элемент стропильной системы, служащий для восприятия распорной нагрузки от стропильных ног на несущие стены. Сечение 50х150 мм.
    Обрешетка – элемент стропильной системы, предназначенный для передачи нагрузки кровли на стропильные ноги.
    Кобылка – элемент стропильной системы, который используется как продолжение стропильной ноги и служит главным образом для экономии материала, либо просто при недостаточной длине стропильной ноги. Сечение 50х150 мм.

    Расчет размеров, определение угла наклона

    1. Когда у Вас есть пролет и угол наклона
    2. Когда у Вас есть пролет и высота конька

    Расчет по пролету и углу наклона:

    Длина стропильной ноги будет состоять из суммы двух длин:

    где L1 = C / cos a
    L2 = B / cos a
    C – выступ стропильной ноги (см. рисунок)
    B – ширина пролета (см. рисунок)
    а – угол наклона в градусах (если у вас угол дан в промилях или процентах – можете перевести у нас на калькуляторе)

    Расчет по пролету и высоте конька:

    Длина стропильной ноги L в обоих случаях будет максимально приближена в реальному размеру.

    Сбор нагрузок на стропильную систему

    1. Снеговая нагрузка
    2. Ветровая нагрузка
    3. Постоянная нагрузка от:
    — Вес кровельного материала
    — Вес обрешетки
    — Вес утеплителя
    — Собственный вес стропильной системы

    Для начала давайте узнаем грузовую площадь на стропильную ногу. Грузовая площадь – это площадь, с которой нагрузка действует на расчетную конструкцию (стропильную ногу).

    На рисунке показаны две грузовые площади (заштрихованы): на стропильную ногу №1 (F=L·D) и на стропильную ногу №2 (F=0,5·D·L). Логично, что площадь №2 в два раза меньше, чем площадь №1, а следовательно и стропильная нога №2 несет нагрузку в 2 раза меньше и сечение ее должно быть меньше, но с целью унифицирования конструкций стропильных ног, мы будем рассчитывать наиболее нагруженную и полученное сечение принимать для всех.

    Например: длина стропильной ноги (возьмем с предыдущего примера) L=6410 мм, а расстояние между ними 900 мм. Следовательно, грузовая площадь на наиболее нагруженную стропильную ногу будет равна:

    Перевести мм2 в м2 можно здесь.

    Снеговая нагрузка – это основная нагрузка, которая действует на стропильную систему.

    Искомая величина снеговой нагрузки равна

    — если угол а ≤ 30 градусов, то μ=1
    — если угол 30 Расчет стропильной системы

    Расчет на прочность стропильной ноги будет основываться на следующей формуле:

    Где M – максимальный изгибающий момент
    W – момент сопротивления поперечного сечения изгибу
    Rизг – расчетное сопротивление изгибу (1-ый сорт древесины – 14 Мпа, 2-ой сорт– 13Мпа, 3-ий сорт – 8,5Мпа)

    Момент сопротивления прямоугольного сечения:

    Где b – ширина сечения стропильной ноги
    h – высота сечения стропильной ноги

    Если задаться, что высота h в 1,5 раза больше чем ширина b, то в итоге мы будем иметь следующую формулу.

    Если задаться, что высота h в 2 раза больше чем ширина b, то в итоге мы будем иметь следующую формулу.

    Исходные данные – сосна 1 сорт, а геометрия и нагрузки такие же как в примерах выше.

    Максимальный изгибающий момент рассчитаем у нас на калькуляторе путем ввода значений, посчитанных выше либо по формуле M=q·L1·L1/8 (менее точная):

    L1 = 5189 мм – основной пролет
    L2 = 1221 мм – правая консоль
    q = 335,88 кг/м – нагрузка q

    Результатом будем иметь максимальный изгибающий момент M=1008,7 кг·м

    Переведем наш момент из кг*м в Н*мм.

    Зададимся отношением h/b=1,5, следовательно, формула прочности будет иметь следующий вид:

    Принимаем b = 125 мм, а высота h тогда будет 1,5·125=187,5 мм. Принимаем h =200 мм.

    Полученное сечение стропильной ноги – 125х200 мм

    Если задались бы отношением h/b=2, то получили бы следующее:

    Принимаем b = 125 мм, а высота h тогда будет 2·125=250 мм. Принимаем h =250 мм.

    Полученное сечение стропильной ноги – 125х250 мм

    Итак, в г. Томск для крыши под углом 35 градусов с шагом стропил 900 мм из сосны I сорта, высотой до конька 7м с профнастилом в качестве кровельного материала подойдут стропила сечением 125х200 мм.

    Подводя итог, можно сказать, что рассчитать стропила отнюдь не сложно, главное – внимательно собрать и рассчитать все данные.

    Источник

    Читайте также:  Кровля одноэтажного дома многоскатная
    Оцените статью