По какому предельному состоянию рассчитывается свайный фундамент при определении числа свай

Принципы расчета свайных фундаментов

Расчет свайных фундаментов и их оснований производят по предельным состояниям двух групп:

а) по первой группе – по прочности свай и свайных ростверков; по несущей способности грунта свайных фундаментов и свай; по устойчивости оснований свайных фундаментов в целом при горизонтальных нагрузках или основаниях, ограниченных нисходящими откосами.

б) по второй группе – по осадкам оснований свайных фундаментов от вертикальных нагрузок; по перемещениям свай от действия вертикальных, горизонтальных нагрузок и моментов; по образованию и раскрытию трещин в элементах железобетонных конструкций.

Свайные фундаменты и сваи по несущей способности грунтов рассчитываются по формуле:

где N – расчетная нагрузка, передаваемая на сваю (фактическое продольное усилие);

Fd – несущая способность сваи по грунту или по материалу (предельное продольное усилие);

— коэффициент надежности по грунту, принимаемый равным 1,4, а при определении Fd по данным полевых испытаний – 1,25;

Р – расчетное сопротивление сваи (допускаемое)

При расчете свай на выдергивание в действующую нагрузку включают собственный вес сваи; в других случаях его не учитывают.

Свайные фундаменты в целом и сваи, рассчитываемые по предельным состояниям второй группы (по деформациям), должны удовлетворять условию:

где s – расчетная величина деформации (осадки, перемещения) сваи и свайного фундамента в целом, определяемая расчетом;

su – предельно допускаемая величина деформации (осадки, перемещения, неравномерности осадки и т.п.) свайного фундамента, устанавливаемая в задании на проектирование, а при ее отсутствии – по СНиПу.

Конструкции свай и ростверков в зависимости от применяемых материалов рассчитываются по соответствующим СНиПам и инструкциям.

Виды свай. Типы свайных фундаментов

Сваями называются длинные стержни, погружаемые в грунт в готовом виде или изготовленные в грунте. Основное назначение свай – передача давления от сооружения на грунт основания.

По характеру передачи давления на основание различают сваи-стойки и висячие сваи (сваи трения). Сваи-стойки опираются на практически несжимаемое основание, а висячие сваи передают давление на грунт за счет силы трения.

Ростверком называется железобетонная плита, объединяющая головы свай для их совместной работы.

Все сваи условно делятся на забивные и набивные: забивные погружаются в грунт в готовом виде; набивные – изготавливаются на строительной площадке.

Виды свай по материалу: железобетонные, стальные, деревянные, буронабивные, грунтовые.

По типу сечения сваи бывают: призматические (сплошные и пустотелые), пирамидальные, пирамидально-призматические, круглые (сплошные и пустотелые).

Свайные фундаменты бывают следующих типов:

1. из одиночных свай;

2. свайный куст (под колоннами);

3. свайное поле (под всем сооружением);

4. ленточный однорядный и многорядный.

1. Одиночные сваи применяют под легкие сооружения, когда нагрузку от колонны или стыка панели воспринимает одна свая. Иногда сваи являются колоннами здания.

2. Ленточные свайные фундаменты применяются под стены здания и другие протяженные конструкции.

3. Свайные кусты – группы свай обычно расположенные под отдельными колоннами (т.к. очень сложно забить сваю точно по оси). Минимальное число свай в кусте – 3, в исключительных случаях – 2.

4. Сплошное свайное поле применяют под тяжелое сооружение, когда сваи располагаются по некоторой сетке под всем сооружением.

Сверху на сваи надевают ростверк, для обеспечения совместной работы свай. Различают два способа соединения свай с ростверком: шарнирное (величина заделки – 50 мм) и жесткое – при действии изгибающего момента и нормальной силы (разбивается голова сваи на 150-200 мм и арматура сваи заделывается в ростверк).

Ростверк бывает трех видов:

· высокий – не касается поверхности грунта;

· повышенный – подошва не касается грунта;

· низкий – находится ниже поверхности грунта.

Источник

Расчёт свайных фундаментов

Расчёт свайных фундаментов и их оснований производится по двум группам предельных состояний:

1) по первой группе предельных состояний определяют несущую способность сваи по грунту, прочность материала свай и ростверков, по несущей способности оснований свайных фундаментов, если на них передаются значительные горизонтальные нагрузки или если основания ограничены откосами или сложены крутопадающими слоями грунта. Расчёт ведётся на основные и особые сочетания расчётных нагрузок с использованием расчётных характеристик материалов и грунтов;

2) по второй группе предельных состояний рассчитываются осадки оснований фундаментов, горизонтальные перемещения свай и свайных фундаментов, образование или раскрытие трещин в элементах железобетонных конструкций. Расчет по деформациям необходимо выполнять на основные сочетания нагрузок.

5.1 Определение несущей способности свай

После определения и подбора длины сваи рассчитывается несущая способность свай. Несущая способность Fd, кН, висячей забивной сваи и сваи-оболочки, погружённой без выемок грунта, работающих на сжимающую нагрузку, следует определять как сумму расчётных сопротивлений грунтов основания под нижним концом сваи и на её боковой поверхности

где gc – коэффициент условия работы сваи в грунте, принимаемый gc =1, а для грунтов Ι типа по просадочности и для биогенных грунтов gc = 0,8;

gcr, gcf — коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения сваи на расчётные сопротивления;

R – расчётное сопротивление грунта под нижним концом сваи, кН;

А – площадь опирания на грунт свай, м 2 , принимаемая по площади поперечного сечения сваи брутто;

Ui – усредненный периметр поперечного сечения сваи в i-м слое грунта, м;

hi – толщина i –го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;

Rfi – расчётное сопротивление (прочность) i – го слоя грунта основания на боковой поверхности сваи, кПа.

Одиночную сваю в составе фундамента по несущей способности грунтов основания следует рассчитывать исходя из условия

N ≤ = Pсв, (5.2)

где N — расчётная нагрузка, передаваемая на сваю (наиболее невыгодное сочетание), кН;

= Pсв – расчётная нагрузка, допускаемая на сваю, кН;

gк – коэффициент надёжности, равный 1,4 – для фундаментов опор мостов при низком ростверке, сваях или сваях-стойках; при высоком ростверке – только при сваях-стойках, воспринимающих сжимающую нагрузку, независимо от числа свай, если несущая способность сваи определена расчетом.

5.2 Определение количества свай и размещение их в ростверке

Проектирование свайных фундаментов ведется по расчетным нагрузкам с учетом различных сочетаний. Все нагрузки каждого сочетания следует привести к уровню подошвы ростверка, учитывая при этом его вес.

После приведения нагрузок к уровню подошвы ростверка, необходимое, ориентировочное количество свай n определяют по формуле

n = k∙ , (5.3)

где k – корректирующий коэффициент, учитывающий влияние изгибающего момента, принимается k=1,1…1,4;

N – максимальное нормальное усилие в уровне подошвы ростверка, кН;

Gp – вес ростверка (предварительно определённый), кН.

Сваи можно размещать в рядовом (рисунок 5.1,а) или шахматном порядке (рисунок 5.1,б).

а – рядовой порядок

б – шахматный порядок

Рисунок 5.1 — Размещение свай

Расстояние между осями забивных висячих свай в уровне острия должно быть определено из условия a ≥ 3d (d – диаметр круглого или сторона квадратного сечения сваи). Расстояние от грани ростверка до грани сваи или сваи-оболочки должно быть не менее 25 см. В результате размещения свай по ро-

стверку может быть уточнено количество свай и размеры в плане (обычно в сторону увеличения).

Определить несущую способность и количество свай, разместить их в

ростверке при следующих исходных данных: N 0 = 36747,68 кН – максимальная нагрузка на подошве фундамента. Используя схему разбивки слоёв грунта hi, приведенную на рисунке 5.2, определим несущую способность висячих свай, погружённых забивкой молотами в третий и четвёртый слои.

Рисунок 5.2 – К определению несущей способности свай

Для первого случая при ℓсв = 4м:

.

При ℓ1 = 5,4м; R = 2208кПа; gcr=gcf =1; U =4∙0,3=1,2м; А = 0,3∙0,3 = 0,09м 2 ;

Fd = 1(1∙2208∙0,09 + 1,2∙1∙75,31) = 1∙(198,72 + 90,37) = 289,09кН.

Расчётная нагрузка, допускаемая на сваю

Pсв = = =206,49кН.

Для второго случая при ℓсв = 13м:

Источник

Расчет свайного фундамента

На странице представлена технология расчетов фундаментов на железобетонных сваях. Вы узнаете, какие нормативы СНиП регулируют расчет свайного фундамента с ростверком и как реализуется этот процесс на практике.

Для того чтобы свайный фундамент был надежен и долговечен, необходимо профессионально производить его расчет. Результаты расчета свайного фундамента (ростверка) отражаются в проекте и являются обязательными для исполнения строителями. Наша компания осуществляет забивку свай для свайных фундаментов в строгом соответствии со строительными нормами и на основании проекта.

Расчет свайного фундамента с ростверком

Расчетом свайно-ростверковых фундаментов занимаются профильные специалисты — инженеры-проектировщики. Выполнению расчетов предшествуют геодезические изыскания на строительной площадке, которые дают проектировщикам необходимую исходную информацию о характеристиках грунтов на объекте.

Процесс геодезии участка начинается с бурения пробных скважин, из которых забирается керн (проба) почвы для дальнейшего анализа в лабораторных условиях. На основе полученных данных производится расчет следующих параметров фундамента.

Свайная часть:

  • Требуемая глубина заложения опор;
  • Диаметр опор;
  • Общее количество опор в фундаменте;
  • Схема размещения свай.

Ростверковая часть:

  • Конфигурация ростверка — низкий, повышенный, высокий;
  • Сечение ростверка;
  • Устойчивость конструкции к нагрузкам на изгиб, продавливание;
  • Способ армирования обвязки.

Как производится расчет свайного фундамента

Производство расчетов свайных фундаментов и оснований выполняется по предельным состояниям 1-й и 2-й группы.

К первой группе предельных состояний относятся:

  • прочность материалов, из которых изготовлены сваи и свайные ростверки
  • несущая способность грунта
  • несущая способность оснований, в случаях наличия значительных горизонтальных нагрузок

Смотрите так же:

Ко второй группе предельных состояний относятся:

  • осадки свайных оснований от вертикальных нагрузок
  • перемещения (или горизонтальные повороты) свай вместе с окружающим грунтом при наличии горизонтальных нагрузок и моментов
  • образование или раскрытие трещин в железобетонных конструкциях свайных фундаментов.

Проектирование свайного ростверка по вышеуказанным предельным состояниям ведется по следующим формулам.

Устойчивость к продавливанию угловой сваей: , где:

  • Fаi — нормативная нагрузка на угловую свайную опору;
  • h01 — высота обвязки в месте стыковки с угловой сваей;
  • — сила нагрузки, образуемой давлением сваи на ростверк;
  • Ві — расчетный коэффициент, который определяется на основании формулы Ві = К(Hоі/Соі).

Устойчивость к нагрузкам на изгиб: и , где:

  • Мхі, Муі — действующие на ростверк изгибающие моменты;
  • — нормативна нагрузка на свайные опоры;
  • Хі, Уі — расстояние между нижней гранью ростверка и осями свайных опор;
  • Мfx, Мfy — действующие на ростверк изгибающие моменты местного типа;

Прочностная устойчивость к поперечным нагрузкам: :

  • Q — нормативная устойчивость свайных опор, размещенных вне части ростверка, испытующей наибольшие поперечные нагрузки;
  • b — ширина обвязки;
  • Rbt — сопротивление обвязки к нагрузкам на растяжение по материалу;
  • Ho — высота обвязки;
  • С — расстояние от нижнего контура ростверка до оси свайной опоры.

Расчет свайного фундамента СНиП

Что учитывается при расчете свайных фундаментов

Итак, рассмотрим, какие аспекты при расчете свайных фундаментов принимаются в учет:

  • Все возможные нагрузки и воздействия на свайный фундамент рассчитываются на основании СНиП, при этом указанные значения умножаются на так называемый коэффициент надежности, определенный в «Правилах учета степени ответственности зданий и сооружений при проектировании конструкций».
  • Несущая способность сваи и свайного фундамента рассчитывается как на основные сочетания нагрузок, так и особые. Расчет по деформациям производится на основные сочетания.
  • В расчетах используются расчетные значения характеристик применяемых материалов и грунтов на строительной площадке (на основании исследований грунтов и проведенных статических или динамических испытаний свай), исходя из значений, указанных в СНиП.

  • Кроме того в обязательном порядке учитываются тип используемых свай (сваи-стойки или висячие сваи), их собственный вес и показатели ветровых (креновых) нагрузок.
  • При расчетах фундамент с ростверком на сваях рассматривается, как единая рамная конструкция, воспринимающая как вертикальные, так и горизонтальные нагрузки, и изгибающие силы.
  • При значительных проектных нагрузках и в условиях сложных грунтов, в том числе с высоким уровнем грунтовых вод, в расчетах учитываются и отрицательные силы трения при осадке здания.
  • Есть и другие аспекты, связанные с различными грунтами и их состоянием, которые также учитываются в расчетах.

Пример расчета свайного фундамента

Пример расчета свайного фундамента можно легко найти в интернете, однако он изобилует специфическими формулами и символами, в которых неподготовленному человеку разобраться весьма проблематично, да и ни к чему – это дело специалистов.

В качестве примера приводим алгоритм расчета свайно-ростверкового фундамента:

  • Расчет массы строения;

Чтобы определить массу здания необходимо отдельно рассчитать вес каждого конструктивного элемента дома (кровли, перекрытий, стен, стяжки, стропильной системы). Делается это исходя из размеров конструктивных частей зданий и усредненного веса одного квадратного метра стройматериалов.

  • Расчет полезных нагрузок;

К полезным нагрузкам относится вес мебели, декоративной облицовки стен, людей и предметов, находящихся в доме во время эксплуатации сооружения. Согласно действующим строительным нормативам, величина эксплуатационной нагрузки составляет 100 кг на 1 м2 перекрытия жилого здания.

  • Расчет снеговых нагрузок;

Необходимо определить, какая нормативная снеговая нагрузка приходится на ваш регион, и умножить полученную величину на площадь кровли здания.

  • Определение совокупных нагрузок на фундамент;

Суммируем массу здания, полезную и снеговую нагрузку и умножаем полученную величину на коэффициент надежности. Для жилых зданий его величина составляет 1,2.

  • Определение грузонесущей способности сваи;

Исходя из полученных в результате геодезических изысканий характеристик грунтов высчитываем несущую возможность одной железобетонной сваи по формуле:

  • Определение количества свай в фундаменте и требуемой длинны опор.

Чтобы рассчитать количество свай делим совокупные нагрузки, действующие на основание, на грузонесущую способность одной сваи.

Длина свай определяется исходя из типа грунтов на объекте. Опорная подошва опоры должна вскрывать неустойчивые верхние пласты грунта и углубляться не менее чем на 1 метр в высокотвердые песчаные либо глинистые породы.

К требуемой длине добавляются 40 см., необходимые для сопряжения свай с железобетонным ростверком. В фундаменте сваи размещаются с шагом в 2-2.5 метров, по одной опоре устанавливается на углах дома и в точках пересечения его стен.

  • Расчет ростверка

Расчет ростверка выполняется по указанных в предыдущем разделе статьи формулам. Рекомендуем доверить проектирование обвязки профессионалам, поскольку самостоятельно произвести правильные расчеты, не обладая должным опытом, невозможно.

Наиболее часто используемое сечение ростверка — 40*30 см. Тело обвязки формируется из бетона марок М200 и М300, конструкция дополнительно армируется продольно-поперечным каркасом из прутьев арматуры А2 и А1 (10-15 мм. в диаметре).

Наша компания производит свайные работы, в том числе испытания свай, в строгом соответствии с расчетными данными и СНиП. Тем самым обеспечивается высокое качество результатов и надежность построенного свайного фундамента.

Получить детальную консультацию по погружению свай вы можете у наших специалистов, предварительно заполнив форму:

Источник

Читайте также:  Отделка фундамента доской обожженной
Оцените статью