Подошва фундамента это снип

Подошва для фундамента: что это, особенности устройства и расчетов конструкций

Важным и неотъемлемым конструктивным элементом любого объекта капитального строительства является фундамент. От его надежности напрямую зависит безопасность и продолжительность эксплуатационного срока сооружения. Чтобы нагрузочное воздействие конструкции равномерно распределялось на почву устраивается подошва под фундамент, особенно важно создание ее при возведении здания на слабом почвенном составе.

Что такое подошва фундамента

Основание или подошва фундамента – это горизонтальная плоскость, которой конструкция опирается на грунтовую основу. Подошва принимает на себя не только нагрузку от возведенного объекта, но также от бокового давления грунта, защищая при этом здание от разрушения. В зависимости от типа фундамента и особенностей грунтовой породы подошва обустраивается по-разному, но в любом случае ширина подошвы фундамента должна быть вдвое больше от самой фундаментальной конструкции, а высота как правило не превышает 30 сантиметров.

Особенности устройства подошв фундамента

Строительство любого объекта всегда начинают с закладки фундамента. Чтобы повысить прочность и надежность фундаментальной основы выполняют устройство подошвы фундамента.

По классификации фундаментных конструкций выделяют разные виды подошв фундаментов, которые отличаются между собой конструктивными особенностями и обустраиваются по определенным технологиям.

Ленточные фундаменты

Подошва ленточного фундамента укладывается вдоль периметра стен здания в виде замкнутой железобетонной полосы. Такое основание равномерно распределяет нагрузку, предотвращает перекосы и просадку строения, отлично справляется с силами пучения.

Читайте также:  Dayz как убрать фундамент

Для ленточных фундаментов подошвы могут быть:

  • естественными, когда непосредственно на грунтовую породу передается нагрузка;
  • свайными – первоначально нагрузка оказывается на сваи, а потом на грунт.

Чтобы подошва не разрушалась от воздействия грунтовых вод, для защиты ее обустраивают гравийно-песчаную подушку.

Монолитные ленточные фундаменты отличаются расположенной максимально близко к поверхности широким основанием, образующим надежную опору. Как правило такие конструкции выполняют в условиях высоко залегающих подземных вод или при слабом грунте.

Столбчатые фундаменты

Подошва столбчатого фундамента являет собой плитную поверхность с небольшими размерами. Для более прочного и надежного соединения от фундамента в тело подошвы заводятся арматурные стержни.

При использовании естественной основы подошва устраивается на утрамбованной и залитой бетонной смесью площадке. Если основание свайное, то подошва монтируется в виде верхнего сегмента, который распределяет нагрузку на созданную из объединенных ростверком балок поверхность.

Свайные фундаменты

Подошва выполняемого на уходящих в землю сваях фундамента монтируется из бетона и может быть монолитной или кольцевой. Основание подошвы фундамента монолитного типа выступает разновидностью опирающейся на заглубленные сваи плитной фундаментной конструкции.

Кольцевая подошва по конструктивным особенностям напоминает ленточный фундамент, который может находиться на уровне почвы, быть заглубленным в землю на определенную глубину или приподнятым вверх. При этом высота подошвы фундамента составляет 20-30 сантиметров.

Плитные фундаменты

При устройстве плитного фундамента лента подошвы может заливаться одновременно с плитой или же для нее делается отдельная опалубка и заливка бетонной смеси осуществляется перед созданием фундаментной конструкции. В обеих случаях подошва должна создаваться только на материнском твердом грунте и ни в коем случае не на насыпном. Глубина и структура подошвенного основания определяется по характеристикам грунтовой породы.

Плюсы и минусы подошв под фундаменты

Устройство фундамента на опорной подошве сопровождается рядом преимуществ:

  • усиление прочности и долговечности строительного объекта;
  • нагрузка на подошву в разы повышает несущие возможности фундамента;
  • минимум ограничений по типу возводимого здания;
  • возможность проводить строительные работы в любое время года;
  • возможность выполнять строительство в местах с разными видами грунтовых пород, учитывая и слабые грунты.

В числе минусов создания фундаментов на подошвах отмечают:

  • для грунтов с сильным вспучиванием или с глубоким уровнем промерзания подошвы не подходят;
  • в случае с бетонным монолитом устройство подошв требует значительных трудозатрат и сам процесс занимает много времени, что в свою очередь увеличивает сроки строительства объекта;
  • создание подошвенного основания существенно повышает расход материалов, в частности арматурных прутьев, опалубных досок и бетонного раствора;
  • при возведении фундаментов заглубленных разновидностей устройство подошв требует наличия специализированной строительной техники и оборудования;
  • фундаменты с опорной подошвой обходятся дороже в сравнении с обычными.

Наряду с относительно большим перечнем недостатков выполненный на опорном основании фундамент гарантирует сооружению надежность и долговечность, и пользуется высокой популярностью среди большинства застройщиков.

Расчет подошвы фундамента

При проектировании фундамента с опорным основанием обязательным этапом является расчет подошвы фундамента. Основная цель такого расчета состоит в точном определении ширины, глубины и площади основания, при которых оказываемое весом здания удельное давление будет меньше нежели сопротивление грунта подошве фундамента.

Предварительно площадь подошвы фундамента можно установить по условию:

PII ≤ R, в котором

  • РII – это среднее давление под подошвой фундамента в отношении к основному сочетанию нагрузок при вычислениях по деформациям;
  • R – это расчетное сопротивление грунта основания. Показатель вычисляется по формуле СНиП.

На рисунке ниже подробно представлена расчетная схема центрально нагруженной фундаментальной подошвы.

При расчете фундаментов с повышенной жесткостью реактивная эпюра грунта принимается прямоугольной. Уравнение равновесия в этом случае выглядит так:

В данном уравнении есть определенная сложность. Дело в том, что в обеих его частях содержатся искомые геометрические размеры фундамента. Но при выполнении предварительных вычислений вес грунта и самого фундамента в АВСD заменяют на:

  • Ɣm – средний показатель удельного веса фундаментальной конструкции и грунтовой породы на ее уступах. Как правило Ɣm составляет 20кН/м³;
  • d – это глубина заложения подошвы фундамента, вычисляется в метрах.

По указанной ниже формуле определяется необходимая площадь фундаментальной подошвы:

При этом расчет ширины подошвы фундамента (b) выполняется:

  • для ленточного фундамента: А = b х 1п.м.:
  • для квадратного столбчатого фундамента: А = b²
  • для прямоугольного столбчатого фундамента:


    По этой формуле определение размеров подошвы фундамента выполняется исходя из соотношения длины (l) к ширине (b) проектируемого фундамента, поскольку он полностью повторяет конфигурацию конструкции, которая на него опирается. Из этого следует, что
  • для круглого столбчатого фундамента – b = D, где D – это диаметр конструкции

Когда завершено предварительное определение ширины подошвы b = f(Ro) нужно уточнить расчетную сопротивляемость грунтового основания: R = f (b, φ, c, d, γ).

Рассчитав точную сопротивляемость опять нужно вычислить ширину. Повторять действия необходимо до тех пор, пока оба показателя не будут одинаковыми.

Когда с учетом унификации и модульности конструкций размер фундамента подобран, то необходимо проверить фактическое давление на грунт и напряжение под подошвой фундамента.

Чем меньшая разница будет между величинами РII и R, тем экономичнее получится проектное решение.

Данным способом поверяется достоверность расчета по линейной теории деформации грунта. Когда же условие не соблюдается, то для вычислений применять следует нелинейную теорию, а это существенно осложняет расчетные мероприятия.

В зависимости от жесткости и схемы нагружения фундаментов, типа сопряжения их со зданиями возможны пространственные перемещения из-за перераспределения усилий в бетоне и арматуре. Поэтому при выполнении расчетов следует учитывать допустимый отрыв подошвы фундамента, который не окажет негативного воздействия на строительный объект.

Используемые при устройстве подошвы материалы

При обустройстве фундаментальной подошвы потребуются следующие материалы и инструменты:

  • совковые и штыковые лопаты, необходимы для выполнения земляных работ ручным методом;
  • вязальная проволока и арматурные стержни, с помощью которых осуществляется армирование подошвы фундамента дома;
  • гвозди и молоток;
  • крючок, которым выполняется вязка металлического каркаса;
  • шнур для разметки;
  • доски для монтажа опалубки;
  • скобы монтажные;
  • материалы для подошвы: песок, гравий, бетонный раствор.

Для проведения съемки местности потребуется также нивелир, который поможет с точностью установить уровень подошвы фундамента.

Технология устройства фундаментальной подошвы

Вне зависимости от того, устраиваются подошвы фундаментов мелкого заложения, ленточных, столбчатых или других типов конструкций, работы по их монтажу проводятся поэтапно:

  • подготовительный этап состоит в рытье котлована. На его дне выполняется разметка, с точностью определяющая расположение будущей конструкции;
  • устройство опалубки. Здесь обязательно учитывается толщина подошвы фундамента. Выставляется опалубка таким образом, чтобы по центру подошвы распределялись фундаментальные стенки. для формирования наружных углов пара досок соединяется между собой под прямым углом и выносится на расстояние 17,5 см от разметочного шнура. При наличии слабых участков опалубки их нужно подсыпать снаружи грунтовой смесью для предотвращения протечки бетона. Если строительство предстоит на участке в повышенным уровнем грунтовых вод, то в целях безопасности выполняется гидроизоляция подошвы фундамента;
  • следующий этап – армирование. Металлические прутья обеспечивают усиление подошвы фундамента и соответственно повышают прочностные свойства всей строительной конструкции;
  • заливка бетона. После расположения арматуры выполняется бетонирование подошвы. При этом должна контролироваться расчетная отметка основания. Для более прочного сцепления фундамента с подошвой на ней прорезается шпоночная канавка по центральной оси кромки. После застывания бетона выполняется затирка поверхности.

Если несущая способность грунтов в месте строительства недостаточная, то для достижения нужных эксплуатационных показателей выполняется уширение подошвы фундамента путем устройства двусторонних или односторонних банкет.

Заключение

В любом капитальном объекте, вне зависимости от его назначения, основой является фундамент. Именно он испытывает все оказываемые зданием нагрузки и передает их на грунт. Правильно выполненная подошва фундамента перераспределяет нагрузки на грунт, предотвращает его проседание, придает фундаментальному основанию надежности и выносливости. Бесспорно, устройство подошвы сопровождается дополнительными затратами, но они полностью окупаются долговечностью и безопасностью эксплуатации строительных объектов.

Источник

СНИП фундаменты.

Строительные нормы и правила.

Основания зданий и сооружений.

РАЗРАБОТАНЫ НИИОСП им. Н.М. Герсеванова Госстроя СССР (руководитель темы — д-р техн. наук, проф. Е.А. Сорочан, ответственный исполнитель — канд. техн. наук А.В. Вронский), институтом Фундаментпроект Минмонтажспецстроя СССР (исполнители — канд. техн. наук Ю.Г. Трофименков и инж. М.Л. Моргулис) с участием ПНИИИС Госстроя СССР, производственного объединения Сттойизыскания Госстроя РСФСР, института Энергосетьпроект Минэнерго СССР и ЦНИИС Минтрансстроя.

ВНЕСЕНЫ НИИОСП им. Н.М. Герсеванова Госстроя СССР.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Главным управлением технического нормирования и стандартизации Госстроя СССР (исполнитель — инж. О.Н. Сильницкая).

СНиП 2.02.01-83* является переизданием СНиП 2.02.01-83 с изменением № 1, утвержденным постановлением Госстроя России от 9 декабря 1985 г. № 211.

Номера пунктов и приложений, в которые внесено изменение, отмечены звездочкой.

При пользовании нормативным документом следует учитывать утвержденные изменения строительных норм и правил и государственных стандартов, публикуемые в журнале «Бюллетень строительной техники» и информационном указателе «Государственные стандарты».

Государственный комитет

Строительные нормы и правила

СНиП 2.02.01-83*

СССР по делам строительства (Госстрой СССР)

Основания зданий и сооружений

Настоящие нормы должны соблюдаться при проектировании оснований зданий и сооружений 1 .

1 Далее для краткости, где это возможно, вместо термина «здания и сооружения» используется термин «сооружения».

Настоящие нормы не распространяются на проектирование оснований гидротехнических сооружений, дорог, аэродромных покрытий, сооружений, возводимых на вечномерзлых грунтах, а также оснований свайных фундаментов, глубоких опор и фундаментов под машины с динамическими нагрузками.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Основания сооружений должны проектироваться на основе:

а) результатов инженерно-геодезических, инженерно-геологических и инженерно-гидрометеорологических изысканий для строительства;

б) данных, характеризующих назначение, конструктивные и технологические особенности сооружения, нагрузки, действующие на фундаменты, и условия его эксплуатации;

в) технико-экономического сравнения возможных вариантов проектных решений (с оценкой по приведенным затратам) для принятия варианта, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов или других подземных конструкций.

При проектировании оснований и фундаментов следует учитывать местные условия строительства, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных инженерно-геологических и гидрогеологических условиях.

1.2. Инженерные изыскания для строительства должны проводиться в соответствии с требованиями СНиП, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства.

Внесены НИИОСП им. Н.М. Герсеванова Госстроя СССР

Утверждены постановлением Государственного комитета СССР по делам строительства от 5 декабря 1983 г. № 311

Срок введения в действие 1 января 1985 г.

В районах со сложными инженерно-геологическими условиями: при наличии грунтов с особыми свойствами (просадочные, набухающие и др.) или возможности развития опасных геологических процессов (карст, оползни и т.п.), а также на подрабатываемых территориях инженерные изыскания должны выполняться специализированными организациями. Онлайн калькулятор расчета веса арматуры для ленточного фундамента.

1.3. Грунты оснований должны именоваться в описаниях результатов изысканий, проектах оснований, фундаментов и других подземных конструкций сооружений согласно ГОСТ 25100-82*.

1.4. Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа оснований и фундаментов, определения глубины заложения и размеров фундаментов с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических и гидрогеологических условий площадки строительства, а также вида и объема инженерных мероприятий по ее освоению.

Проектирование оснований без соответствующего инженерно-геологического обоснования или при его недостаточности не допускается.

1.5. Проектом оснований и фундаментов должна быть предусмотрена срезка плодородного слоя почвы для последующего использования в целях восстановления (рекультивации) нарушенных или малопродуктивных сельскохозяйственных земель, озеленения района застройки и т.п.

1.6. В проектах оснований и фундаментов ответственных сооружений, возводимых в сложных инженерно-геологических условиях, следует предусматривать проведение натурных измерений деформаций основания.

Натурные измерения деформаций основания должны предусматриваться в случае применения новых или недостаточно изученных конструкций сооружений или их фундаментов, а также если в задании на проектирование имеются специальные требования по измерению деформаций основания.

2. ПРОЕКТИРОВАНИЕ ОСНОВАНИЙ. ОБЩИЕ УКАЗАНИЯ

2.1. Проектирование оснований включает обоснованный расчетом выбор:

типа основания (естественное или искусственное);

типа, конструкции, материала и размеров фундаментов (мелкого или глубокого заложения; ленточные, столбчатые, плитные и др.; железобетонные, бетонные, буробетонные и др.);

мероприятий, указанных в пп. 2.67-2.71, применяемых при необходимости уменьшения влияния деформаций оснований на эксплуатационную пригодность сооружений.

2.2. Основания должны рассчитываться по двум группам предельных состояний: первой — по несущей способности и второй — по деформациям.

Основания рассчитываются по деформациям во всех случаях и по несущей способности — в случаях, указанных в п. 2.3.

В расчетах оснований следует учитывать совместное действие силовых факторов и неблагоприятных влияний внешней среды (например, влияние поверхностных или подземных вод на физико-механические свойства грунтов).

2.3. Расчет оснований по несущей способности должен производиться в случаях, если:

а) на основание передаются значительные горизонтальные нагрузки (подпорные стены), фундаменты распорных конструкций и т.п.), в том числе сейсмические;

б) сооружение расположено на откосе или вблизи откоса;

в) основание сложено грунтами, указанными в п. 2.61;

г) основание сложено скальными грунтами.

Расчет оснований по несущей способности в случаях, перечисленных в подпунктах «а» и «б», допускается не производить, если конструктивными мероприятиями обеспечена невозможность смещения проектируемого фундамента.

Если проектом предусматривается возможность возведения сооружения непосредственно после устройства фундаментов до обратной засыпки грунтом пазух котлованов, следует производить проверку несущей способности основания, учитывая нагрузки, действующие в процессе строительства.

2.4. Расчетная схема системы сооружение — основание — или фундамент — основание должна выбираться с учетом наиболее существенных факторов, определяющих напряженное состояние и деформации основания и конструкций сооружения (статической схемы сооружения, особенностей его возведения, характера грунтовых напластований, свойств грунтов основания, возможности их изменения в процессе строительства и эксплуатации сооружения и т.д.). Рекомендуется учитывать пространственную работу конструкций, геометрическую и физическую нелинейность, анизотропность, пластические и реологические свойства материалов и грунтов.

Допускается использовать вероятностные методы расчета, учитывающие статистическую неоднородность оснований, случайную природу нагрузок, воздействий и свойств материалов конструкций.

Нагрузки и воздействия, учитываемые в расчетах оснований.

2.5. Нагрузки и воздействия на основания, передаваемые фундаментами сооружений, должны устанавливаться расчетом, как правило, исходя из рассмотрения совместной работы сооружения и основания.

Учитываемые при этом нагрузки и воздействия на сооружение или отдельные его элементы, коэффициенты надежности по нагрузке, а также возможные сочетания нагрузок должны приниматься согласно требованиям СНиП по нагрузкам и воздействиям.

Нагрузки на основание допускается определять без учета их перераспределения надфундаментной конструкцией при расчете:

а) оснований зданий и сооружений III класса 1 ;

б) общей устойчивости массива грунта основания совместно с сооружением;

в) средних значений деформаций основания;

г) деформаций основания в стадии привязки типового проекта к местным грунтовым условиям.

1 Здесь и далее класс ответственности зданий и сооружений принят согласно «Правилам учета степени ответственности зданий и сооружений при проектировании конструкций», утвержденными Госстроем СССР.

2.6. Расчет оснований по деформациям должен производиться на основное сочетание нагрузок; по несущей способности — на основное сочетание, а при наличии особых нагрузок и воздействий — на основное и особое сочетание.

При этом нагрузки на перекрытия и снеговые нагрузки, которые согласно СНиП по нагрузкам и воздействиям могут относиться как к длительным, так и к кратковременным, при расчете оснований по несущей способности считаются кратковременными, а при расчете по деформациям — длительными. Нагрузки от подвижного подъемно-транспортного оборудования в обоих случаях считаются кратковременными.

2.7. В расчетах оснований необходимо учитывать нагрузки от складируемого материала и оборудования, размещаемых вблизи фундаментов.

2.8. Усилия в конструкциях, вызываемые климатическими температурными воздействиями, при расчете оснований по деформациям не должны учитываться, если расстояние между температурно-усадочными швами не превышает значений, указанных в СНиП по проектированию соответствующих конструкций.

2.9. Нагрузки, воздействия, их сочетания и коэффициенты надежности по нагрузке при расчете опор мостов и труб под насыпями должны приниматься в соответствии с требованиями СНиП по проектированию мостов и труб.

Нормативные и расчетные значения характеристик грунтов.

2.10. Основными параметрами механических свойств грунтов, определяющими несущую способность оснований и их деформации, являются прочностные и деформационные характеристики грунтов (угол внутреннего трения j, удельное сцепление с, модуль деформации грунтов Е, предел прочности на одноосное сжатие скальных грунтов Rc и т.п.). Допускается применять другие параметры, характеризующие взаимодействие фундаментов с грунтом основания и установленные опытным путем (удельные силы пучения при промерзании, коэффициенты жесткости основания и пр.).

Примечание. Далее, за исключением специально оговоренных случаев, под термином «характеристики грунтов» понимаются не только механические, но и физические характеристики грунтов, а также упомянутые в настоящем пункте параметры.

2.11. Характеристики грунтов природного сложения, а также искусственного происхождения, должны определяться, как правило, на основе их непосредственных испытаний в полевых или лабораторных условиях с учетом возможного изменения влажности грунтов в процессе строительства и эксплуатации сооружений.

2.12. Нормативные и расчетные значения характеристик грунтов устанавливаются на основе статистической обработки результатов испытаний по методике, изложенной в ГОСТ 20522-75.

2.13. Все расчеты оснований должны выполняться с использованием расчетных значений характеристик грунтов Х, определяемых по формуле

где Хn — нормативное значение данной характеристики;

gg — коэффициент надежности по грунту.

Коэффициент надежности по грунту gg при вычислении расчетных значений прочностных характеристик (удельного сцепления с, угла внутреннего трения jнескальных грунтов и предела прочности на одноосное сжатие скальных грунтов Rc, а также плотности грунта r) устанавливается в зависимости от изменчивости этих характеристик, числа определений и значения доверительной вероятности a. Для прочих характеристик грунта допускается принимать gg = 1.

Примечание. Расчетное значение удельного веса грунта g определяется умножением расчетного значения плотности грунта на ускорение свободного падения.

2.14. Доверительная вероятность a расчетных значений характеристик грунтов принимается при расчетах оснований по несущей способности a = 0,95, по деформациям a = 0,85.

Доверительная вероятность a для расчета оснований опор мостов и труб под насыпями принимается согласно указаниям п. 12.4. При соответствующем обосновании для зданий и сооружений I класса допускается принимать большую доверительную вероятность расчетных значений характеристик грунтов, но не выше 0,99.

Примечания: 1. Расчетные значения характеристик грунтов, соответствующие различным значениям доверительной вероятности, должны приводиться в отчетах по инженерно-геологическим изысканиям.

2. Расчетные значения характеристик грунтов с, j и g для расчетов по несущей способности обозначаются сI, jI и gI, а по деформациям сII, jII и gII.

2.15. Количество определений характеристик грунтов, необходимое для вычисления их нормативных и расчетных значений, должно устанавливаться в зависимости от степени неоднородности грунтов основания, требуемой точности вычисления характеристики и класса здания или сооружения и указываться в программе исследований.

Количество одноименных частных определений для каждого выделенного на площадке инженерно-геологического элемента должно быть не менее шести. При определении модуля деформации по результатам испытаний грунтов в полевых условиях штампом допускается ограничиваться результатами трех испытаний (или двух, если они отклоняются от среднего не более чем на 25%).

2.16. Для предварительных расчетов оснований, а также для окончательных расчетов оснований зданий и сооружений II и III классов и опор воздушных линий электропередачи и связи независимо от их класса допускается определять нормативные и расчетные значения прочностных и деформационных характеристик грунтов по их физическим характеристикам.

Примечания: 1. Нормативные значения угла внутреннего трения jn, удельного сцепления сn и модуля деформации Е допускается принимать по табл. 1-3 рекомендуемого приложения 1. Расчетные значения характеристик в этом случае принимаются при следующих значениях коэффициента надежности по грунту:

  • в расчетах оснований по деформациям gg = 1;
  • в расчетах оснований по несущей
  • способности:
  • для удельного сцепления g = 1,5;
  • для угла внутреннего трения
  • песчаных грунтов gg(j) = 1,1;
  • то же, пылевато-глинистых gg(j) = 1,15.

2. Для отдельных районов допускается вместо таблиц рекомендуемого приложения 1 пользоваться согласованными с Госстроем СССР таблицами характеристик грунтов, специфических для этих районов.

Подземные воды.

2.17. При проектировании оснований должна учитываться возможность изменения гидрогеологических условий площадки в процессе строительства и эксплуатации сооружения, а именно:

  • наличие или возможность образования верховодки;
  • естественные сезонные и многолетние колебания уровня подземных вод;
  • возможное техногенное изменение уровня подземных вод;
  • степень агрессивности подземных вод по отношению к материалам подземных конструкций и коррозионную активность грунтов на основе данных инженерных изысканий с учетом технологических особенностей производства.

2.18. Оценка возможных изменений уровня подземных вод на площадке строительства должна выполняться при инженерных изысканиях для зданий и сооружений I и II классов соответственно на срок 25 и 15 лет с учетом возможных естественных сезонных и многолетних колебаний этого уровня (п. 2.19), а также степени потенциальной подтопляемости территории (п. 2.20). Для зданий и сооружений III класса указанную оценку допускается не выполнять.

2.19. Оценка возможных естественных сезонных и многолетних колебаний уровня подземных вод производится на основе данных многолетних режимных наблюдений по государственной стационарной сети Мингео СССР с использованием результатов краткосрочных наблюдений, в том числе разовых замеров уровня подземных вод, выполняемых при инженерных изысканиях на площадке строительства.

2.20. Степень потенциальной подтопляемости территории должна оцениваться с учетом инженерно-геологических и гидрогео­ло­гических условий площадки строительства и прилегающих территорий, конструктивных и технологических особенностей проектируемых и эксплуатируемых сооружений, в том числе инженерных сетей.

2.21. Для ответственных сооружений при соответствующем обосновании выполняется количественный прогноз изменения уровня подземных вод с учетом техногенных факторов на основе специальных комплексных исследований, включающих как минимум годовой цикл стационарных наблюдений за режимом подземных вод. В случае необходимости для выполнения указанных исследований помимо изыскательской организации должны привлекаться в качестве соисполнителей специализированные проектные или научно-исследовательские институты.

2.22. Если при прогнозируемом уровне подземных вод (пп. 2.18 — 2.21) возможны недопустимое ухудшение физико-механических свойств грунтов основания, развитие неблагоприятных физико-геологических процессов, нарушение условий нормальной эксплуатации заглубленных помещений и т.п., в проекте должны предусматриваться соответствующие защитные мероприятия, в частности:

  • гидроизоляция подземных конструкций;
  • мероприятия, ограничивающие подъем уровня подземных вод, исключающие утечки из водонесущих коммуникаций и т.п. (дренаж, противофильтрационные завесы, устройство специальных каналов для коммуникаций и т.д.);
  • мероприятия, препятствующие механической или химической суффозии грунтов (дренаж, шпунт, закрепление грунтов);
  • устройство стационарной сети наблюдательных скважин для контроля развития процесса подтопления, своевременного устранения утечек из водонесущих коммуникаций и т.д.

Выбор одного или комплекса указанных мероприятий должен производиться на основе технико-экономического анализа с учетом прогнозируемого уровня подземных вод, конструктивных и технологических особенностей, ответственности и расчетного срока эксплуатации проектируемого сооружения, надежности и стоимости водозащитных мероприятий и т.п.

2.23. Если подземные воды или промышленные стоки агрессивны по отношению к материалам заглубленных конструкций или могут повысить коррозийную активность грунтов, должны предусматриваться антикоррозийные мероприятия в соответствии с требованиями СНиП по проектированию защиты строительных конструкций от коррозии.

2.24. При проектировании оснований, фундаментов и других подземных конструкций ниже пьезометрического уровня напорных подземных вод необходимо учитывать давление подземных вод и предусматривать мероприятия, предупреждающие прорыв подземных вод в котлованы, вспучивание дна котлована и всплытие сооружения.

Глубина заложения фундаметнов.

2.25. Глубина заложения фундаментов должна приниматься с учетом:

  • назначения и конструктивных особенностей проектируемого сооружения, нагрузок и воздействий на его фундаменты;
  • глубина заложения фундаментов примыкающих сооружений, а также глубины прокладки инженерных коммуникаций;
  • существующего и проектируемого рельефа застраиваемой территории;
  • инженерно-геологических условий площадки строительства (физико-механических свойств грунтов, характера напластований, наличия слоев, склонных к скольжению, карманов выветривания, карстовых полостей и пр.);
  • гидрогеологических условий площадки и возможных их изменений в процессе строительства и эксплуатации сооружения (пп. 2.17-2.24);
  • возможного размыва грунта у опор сооружений, возводимых в руслах рек (мостов, переходов трубопроводов и т.п.);
  • глубины сезонного промерзания.

2.26. Нормативная глубина сезонного промерзания грунта принимается равной средней из ежегодных максимальных глубин сезонного промерзания грунтов (по данным наблюдений за период не менее 10 лет) на открытой, оголенной от снега горизонтальной площадке при уровне подземных вод, расположенном ниже глубины сезонного промерзания грунтов.

2.27. Нормативную глубину сезонного промерзания грунта dfn, м, при отсутствии данных многолетних наблюдений следует определять на основе теплотехнических расчетов. Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение допускается определять по формуле

(2)

где Mt — безразмерный коэффициент, численно равный сумме абсолютных значений среднемесячных отрицательных температур за зиму в данном районе, принимаемых по СНиП по строительной климатологии и геофизике, а при отсутствии в них данных для конкретного пункта или района строительства — по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях с районом строительства;

d0 — величина, принимаемая равной, м, для:

  • суглинков и глин — 0,23;
  • супесей, песков мелких и пылеватых — 0,28;
  • песков гравелистых, крупных и средней крупности — 0,30;
  • крупнообломочных грунтов — 0,34.

Значение d0 для грунтов неоднородного сложения определяется как средневзвешенное в пределах глубины промерзания.

2.28. Расчетная глубина сезонного промерзания грунта df, м, определяется по формуле

(3)

где dfn — нормативная глубина промерзания, определяемая по пп. 2.26. и 2.27;

kh — коэффициент, учитывающий влияние теплового режима сооружения, принимаемый: для наружных фундаментов отапливаемых сооружений — по табл.1; для наружных и внутренних фундаментов неотапливаемых сооружений — kh=1,1, кроме районов с отрицательной среднегодовой температурой.

Примечание. В районах с отрицательной среднегодовой температурой расчетная глубина промерзания грунта для неотапливаемых сооружений должна определяться теплотехническим расчетом в соответствии с требованиями СНиП по проектированию оснований и фундаментов на вечномерзлых грунтах.

Расчетная глубина промерзания должна определяться теплотехническим расчетом и в случае применения постоянной теплозащиты основания, а также если тепловой режим проектируемого сооружения может существенно влиять на температуру грунтов (холодильники, котельные и т.п.).

Особенности сооружения

Коэффициент kh при расчетной среднесуточной температуре воздуха в помещении, примыкающем к наружным фундаментам, О С

Источник

Оцените статью