Пособие по конструированию столбчатых фундаментов

Кальницкий А.А., Пешковский Л.М. «Расчет и конструирование железобетонных фундаментов гражданских и промышленных зданий и сооружений» 1975

размещено: 23 Мая 2012
обновлено: 12 Июня 2012

Кальницкий А.А., Пешковский Л.М.
Расчет и конструирование железобетонных фундаментов гражданских и промышленных зданий и сооружений.
Учеб. пособие для вузов. М., «Высш. школа», 1975.

В книге излагаются вопросы расчета и конструирования железобетонных фундаментов гражданских и промышленных зданий и сооружений. Рассматриваются вопросы расчета по предельным состояниям грунтов оснований и конструкций фундаментов под различные сооружения, в том числе, сооружения с высокорасположенными центрами тяжести (дымовые трубы, элеваторы, водонапорные башни и др.).
Предназначается для студентов инженерно-строительных вузов» а также может быть использована инженерами проектировщиками.

Оглавление
От авторов (3)

Глава I. Основы расчета железобетонных фундаментов по предельным состояниям (5)
§ 1. Общие положения (5)
§ 2. Расчетные характеристики грунтов оснований (6)
§ 3. Материалы для железобетонных фундаментов (14)
§ 4. Расчет конструктивных элементов железобетонных фундаментов по первой группе предельных состояний (16)
§ 5. Расчет конструктивных элементов железобетонных фундаментов по второй группе предельных состояний (23)

Глава II. Конструктивные формы фундаментов (23)
§ 6. Понятие о жестких и гибких фундаментах (28)
§ 7. Основные виды железобетонных фундаментов (31)

Читайте также:  Столбчатый фундамент армирование схема

Глава III. Одиночные (столбчатые) фундаменты (35)
§ 8. Общие сведения (35)
_А. Виды одиночных фундаментов (35)
_Б. Основные указания по конструированию (41)
§ 9. Расчет одиночных железобетонных фундаментов под центральную вертикальную нагрузку (45)
_А. Определение размеров подошвы фундамента . . .
_Б. Расчет фундамента по второй группе предельных состояний (деформациям грунта основания) (50)
_В. Расчет фундаментов по первой группе предельных состояний (прочности материала конструкции) (52)
_Г. Расчет по второй группе предельных состояний (60)
§ 10. Расчет одиночных железобетонных фундаментов на совместное действие вертикальных и горизонтальных сил и изгиба¬ющих моментов (65)

Глава IV. Ленточные фундаменты под колонны и стены (97)
§11. Общие положения (97)
§ 12. Основы расчета ленточных балочных фундаментов (99)
§ 13. Конструирование ленточных балочных фундаментов (102)
§ 14. Порядок расчета ленточных балочных фундаментов (104)
§ 15. Основы расчета ленточных фундаментов под стены (105)
§ 16. Конструирование ленточных фундаментов под стены (106)
§ 17. Расчет фундаментных блоков-подушек (109)
§ 18. Проектирование и расчет прерывистых фундаментов (114)
§ 19. Учет горизонтального давления грунта на стены подвалов (118)
§ 20. Конструкция пола подвальных помещении ниже уровня грунтовых вод (119)

Глава V. Фундаментные балки и плиты на упругом основании (122)
§ 21. Общая часть (122)
§ 22. Расчет фундаментных балок на местном упругом основании (теория Винклера-Циммермана) (133)
§ 23. Расчет фундаментных балок и плит по теории Б. Н. Жемочкина (160)
§ 24. Расчет балок по теории М.И. Горбунова-Посадова (178)
§ 25. Расчет фундаментных балок по теории И.А. Симвулиди (192)
§ 26. Расчет железобетонных рандбалок (обвязок) с учетом упругих свойств кладки (206)

Глава VI. Фундаменты сооружений с высокорасположенными центрами тяжести (217)
§ 27. Общие положения (217)
§ 28. Расчеты круглых в плане фундаментов под отдельно стоящие круглые (многогранные) сооружения башенного (колонного) типа (220)
_А. Определение размеров подошвы фундамента (220)
_Б. Расчет тела фундамента по прочности материала (228)
§. 29. Расчеты кольцевых фундаментов под отдельно стоящие круглые или многогранные сооружения башенного (колонного) типа (232)
_А. Определение размеров подошвы фундамента (232)
_Б. Расчет тела кольцевого фундамента по прочности материала (238)
§ 30. Расчет фундаментов под градирни (241)

Расчет монолитных фундаментов кольцевого очертания (241)
Литература (256)
___________________________________________________________________

Источник

Конструирование фундаментов

Фундаменты под колонны многоэтажных каркасных зданий обычно проектируются монолитными ступенчатого типа, плитная часть которых имеет не более трех ступеней.

Отношение вылета ступени к ее толщине (или группы ступеней к их суммарной толщине) не превосходит 2.

Подошва фундамента, как правило, прямоугольной формы с отноше­нием сторон от 1 до 0,6. При этом большая сторона всегда располагается в направлении большего момента.

Верх фундамента рекомендуется располагать на отметке — 0,15 м для обес­печения условий выполнения работ после завершения нулевого цикла. В связи с этим при значительной глубине заложения фундамента над плитной его частью устраивают монолитно связанный с плитой подколонник (рис. ниже).

Фундаменты при соединении с колонной

а — монолитной; б — сборной; 1 — подколонник; 2 — плитная часть фундамента

Сопряжение фундамента с колонной выполняется монолитным под монолитные колонны и стаканного типа под сборные колонны.

Зазоры между колонной и стенками стакана принимают равными 75 мм по верху и 50 мм по низу стакана с каждой стороны колонны. Эти зазо­ры заполняются бетоном класса не ниже В 12,5.

Глубину стакана dp принимают на 50 мм больше глубины заделки ко­лонны dc. Значение dc должно быть не менее большего размера сечения ко­лонны /с, а также не менее:

30d- при 1-м случае сжатия колонны в сечении по обре­зу фундамента;20d- при 2-м случае сжатия; здесь d — диаметр арматуры колонны.

При 1-м случае сжатия граничное значение dc = 30d можно уменьшить путем умножения его на отношение момента колонны в сечении по обрезу фундамента к предельному по прочности моменту колонны при заданном значении N, но принимать не менее 20d.

Толщину стенок по верху неармированного стакана принимают не ме­нее 0,75 глубины стакана и не менее 200 мм .

Толщину стенок армированного стакана принимают не менее 150 мм .

Для связи с монолитной колонной из фундамента (подколонника) вы­пускают арматуру с площадью сечения, необходимой для восприятия расчетных усилий колонны у обреза фундамента. В пределах фундамента эту арматуру объединяют хомутами в каркас и запускают в колонну на длину не менее длины анкеровки lап.

Стыки выпусков с арматурой колонны можно выполнять внахлестку без сварки в соответствии с указаниями СП 52-101-2003.

Фундаменты армируют сварными сетками только по подошве. При этом, если меньшая сторона подошвы имеет размер Ь 3м применяют отдельные сетки с рабочей арматурой в одном направлении, укладываемые в двух плоскостях. При этом рабочая арматура каждой сетки располагается снизу. Сетки в каждой из плоскостей укладываются без нахлестки с рас­стоянием между крайними стержнями не более 200 мм (рис. ниже).

Армирование подошвы фундамента сетками

Минимальный защитный слой бетона для этой арматуры принимается: при наличие под фундаментом подготовки из тощего бетона — 40 мм , при отсутствии — 70 мм .

Если нормальное сечение подколонника как бетонного элемента не обес­печено по прочности, подколонник армируют плоскими сварными сетками при проценте армирования всей продольной арматуры не менее 0,2% (рис.ниже).

Армирование железобетонного подколонника пространственным каркасом, собранным из сеток

В железобетонных подколонниках, где по расчету сжатая арматура не требуется, а количество растянутой арматуры не превышает 0,3%, допуска­ется устанавливать сетки только по граням подколонника, перпендикуляр­ным плоскости действия большего из двух действующих на фундамент мо­ментов. При этом толщина защитного слоя бетона должна быть не менее 50 мм и не менее двух диаметров арматуры.

При необходимости армирования стенок стакана в бетонных подколонни­ках следует устанавливать пространственный каркас в пределах стаканной час­ти с заглублением ниже дна стакана на величину не менее 35 диаметров про­дольной арматуры. При этом площадь всей продольной арматуры принимается не менее 0,04% от площади подколонника вне стакана (рис. ниже).

Армирование бетонного подколонника со стаканом

Кроме того, при е0 > Iс/b в стаканной части подколонника следует уста­навливать горизонтальные сварные сетки с расположением стержней у на­ружных и внутренних поверхностей стенок стакана. При этом вертикальная арматура размещается внутри сеток (рис. ниже). Диаметр стержней сеток принимается не менее 8 мм и не менее четверти диаметра продольной ар­матуры.

Источник

Расчет столбчатого фундамента (Excel)

размещено: 05 Сентября 2020
обновлено: 26 Мая 2021

В программе можно быстро произвести расчет столбчатого фундамента по I и II предельному состоянию.
Все расчеты выполняются по актуальным СП на текущую дату 09.2020.

v.0.2 от 30.12.2020 Исправлено:
— Неправильно выводился минимальный процент армирования
— Вывел минимальную площадь арматуры в см2.
— Графики отражают фундамент полностью
— Опечатки
— На графике исправлена отметка грунта

v.0.3 от 26.05.2021 Исправлено:
— Уменьшил количество ступеней до 3 шт
— Откорректированы примечания
— Улучшена графика
— Расчет в общем стал понятнее и интуитивнее
— Теперь ширина подколонника задается в ручную
— Исправлена ошибка при расчете координаты расчетного сечения вдоль оси Х
— Добавлено правило знаков
— Теперь высота рабочего сечения вдоль оси Х рассчитывается точнее
— На график выведены вспомогательные линии пирамиды продавливания
— Откорректирован расчет на прочность ступеней вдоль оси Х

Всегда рад доброй критике и возможным предложениям.

Комментарии

Добрый день. Недавно закончил делать похожую программу, еще свежи формулы в голове.

Добрая критика и предложения:
1. расчетное сопротивление грунта лучше тоже вычислять, т.к. оно зависит от размеров фундамента. Т.е. на одном и том же основании разные по геометрии фундаменты будут иметь разную R
2. расчет на осадку тоже нужен. Он может быть определяющим для габаритов фундамента.
3. изгибающие моменты можно задать в двух плоскостях — у Вас есть вся геометрия для проверки фундамента в другой плоскости. + проверка угловой точки (R > 1.5P)
4. часто бывает разное кол-во ступеней в двух направлениях фундамента. Расчет на продавливание тоже усложняется для такого случая.
5. минимальный процент армирования подошвы фундаментов не регламентируется. (хотя в современных нормах не нашел этого пункта)
6. удобней задавать высоту фундамента, а не высоту подколонника. А то при изменении кол-ва ступеней, нужно изменять высоту подколонника.

Сообщение #2 от 77867026670

А если сравнить с расчетом:
https://www.gvozdem.ru/stroim-dom/kalkulyatory/raschet-svaynogo-fundamenta.php
в чем преимущество этого расчета?

Сообщение #1 от Евгений Грызунов

Добрый день. Недавно закончил делать похожую программу, еще свежи формулы в голове.

Добрая критика и предложения:
1. расчетное сопротивление грунта лучше тоже вычислять, т.к. оно зависит от размеров фундамента. Т.е. на одном и том же основании разные по геометрии фундаменты будут иметь разную R
2. расчет на осадку тоже нужен. Он может быть определяющим для габаритов фундамента.
3. изгибающие моменты можно задать в двух плоскостях — у Вас есть вся геометрия для проверки фундамента в другой плоскости. + проверка угловой точки (R > 1.5P)
4. часто бывает разное кол-во ступеней в двух направлениях фундамента. Расчет на продавливание тоже усложняется для такого случая.
5. минимальный процент армирования подошвы фундаментов не регламентируется. (хотя в современных нормах не нашел этого пункта)
6. удобней задавать высоту фундамента, а не высоту подколонника. А то при изменении кол-ва ступеней, нужно изменять высоту подколонника.

Сообщение #1 от Евгений Грызунов

5. минимальный процент армирования подошвы фундаментов не регламентируется. (хотя в современных нормах не нашел этого пункта)

Сообщение #6 от Евгений Грызунов

Ну вот фундаментные плиты и столбчатые фундаменты наверно разные вещи.

Источник

buildingbook.ru

Информационный блог о строительстве зданий

  • Home
  • /
  • Железобетонные конструкции
  • /
  • Конструкции зданий и сооружений
  • /
  • Расчёт столбчатого фундамента под колонну при действии вертикальной нагрузки и момента в одном направлении

Расчёт столбчатого фундамента под колонну при действии вертикальной нагрузки и момента в одном направлении

В этой статье рассмотрим расчёт фундамента под колонну по 1-му предельному состоянию при нагружении фундамента вертикальной нагрузкой и горизонтальной нагрузкой с изгибающим моментом, действующими в одной плоскости.

Исходные данные

Исходными данными для расчёта фундамента будут нагрузки, приходящие на фундамент от колонны и инженерно-геологические изыскания.

В результате расчёта рамы в расчётной программе получили следующие нагрузки на фундамент:

N=21.3 т (вертикальная нагрузка)

Mx=14.8 т*м (изгибающий момент)

My=0, Qy=0 (Расчёт при действии моментов в 2-х плоскостях рассмотрю отдельно в следующих статьях)

Qx=2.8 т (поперечная нагрузка)

Хочу отметить, что лучше всего проверить 2-а расчётных сочетания:

  1. Полная ветровая, снеговая, вес конструкций, равномерно-распределённая
  2. Полная ветровая и вес конструкций

Дело в том, что одно из условий расчёта является недопущение отрыва края фундамента от земли и при отсутствии снеговой нагрузки вертикальная нагрузка будет меньше и соответственно меньше сопортивления изгибающему моменту.

Глубина сезонного промерзания – 1,79 м;

Уровень грунтовых вод 1,6 м;

Прочностные свойства грунтов определяются по инженерно-геологическим изысканиям. Для этого ищем инженерно-геологический разрез под нужный фундамент и таблицу с нормативными и расчётными характеристиками грунтов. Для расчёта по 1-му предельному состоянию (расчёту на прочность) необходимы расчётные характеристики при α=0.95 (доверительная вероятность расчётных значений), согласно п.5.3.17 СП 22.13330.2016.

ИГЭ-1 — насыпной грунт — песок разной крупности c вкл. строительного мусора до 15-20%, комки суглика, обломки ж.д. плит (в расчёте не участвует т.к. отметка низа фундамента находится ниже этого слоя грунта);

ИГЭ-2 — песок средней крупности, средней плотности, водонасыщенный: (e=0.65, ρ=1,8 т/м³, Е=30 МПа, ϕ=35°, С=1 кПа).

ИГЭ-3 — песок средней крупности, с редкими прослоями текучей супеси, суглинка, глиниcтый средней плотности, водонасыщенный: (e=0.6, ρ=1,82 т/м³, Е=35 МПа, ϕ=36°, С=1,5 кПа).

Уровень грунтовых вод 1,8 м от уровня земли.

Расчёт фундамента

Схема приложения нагрузок на фундамент выглядит следующим образом:

Глубина заложения фундамента

Глубину заложения фундамента определяем в зависимости от максимальной глубины сезонного промерзания, которая дана в отчёте по инженерно-геологическим изысканиям. В моём случае нормативная глубина сезонного промерзания равна dfn=1,79м.

Расчётная глубина сезонного промерзания вычисляется по формуле 5.4 СП 22.13330.2016

где kh — коэффициент, учитывающий влияние теплового режима сооружения, принимаемый для наружных фундаментов отапливаемых сооружений — по таблице 5.2 СП 22.13330.2016; для наружных и внутренних фундаментов неотапливаемых сооружений kh=1,1, кроме районов с отрицательной среднегодовой температурой;

В нашем случае здание неотапливаемое, поэтому

Глубина заложения фундамента должна быть не выше расчётной глубины промерзания (согласно таблице 5.3 СП 22.13330.2016). Для отапливаемых зданий допускается устраивать фундаменты внутри здания (не под наружными стенами) выше глубины промерзания, но должно быть гарантировано, что в холодное время года будет отопление здания. Если же допускается, что здание могут подвергнуть консервации или отключить отопление, тогда и внутренние фундаменты также должны быть заложены на расчётную глубину промерзания.

Предварительные размеры фундамента

Определяем предварительно площадь основания фундамента.

Предварительные размеры фундамента определяем по формуле:

N — вертикальная нагрузка от колонны, которую мы получили при расчёте каркаса здания (N=21,3 т=213 кН);

R0 – расчётное сопротивление грунта, предназначенное для предварительного расчёта приведены в Приложении Б СП 22.13330.2016 (в нашем случае Таблица Б.2 для песка средней крупности и средней плотности R0 = 400кПа, для глины и других грунтов см. другие таблицы в приложении Б);

Таблица Б.2 — Расчетные сопротивления R0 песков

Пески Значения R0, кПа, в зависимости от плотности сложения песков
плотные средней плотности
Крупные 600 500
Средней крупности 500 400
Мелкие:
маловлажные 400 300
влажные и насыщенные водой 300 200
Пылеватые:
маловлажные 300 250
влажные 200 150
насыщенные водой 150 100

ȳ — среднее значение удельного веса фундамента и грунта на его обрезах, предварительно принимаемое ȳ=20 кН/м³;

d – глубина заложения фундамента (в нашем случае d=2 м)

+20% т.к. фундамент внецентренно сжатый 0,72 м²

Размеры подошвы фундамента назначаются с шагом 0,3 м, размером не менее 1,5х1,5м (Таблица 4 Пособия по проектированию фундаментов на естественном основании)

Таблица 4 Пособия по проектированию фундаментов на естественном основании

Эскиз фундамента Модульные размеры фундамента, м, при модуле, равном 0,3
h hpl соответственно hpl подошвы подколонника
h1 h2 h3 квадратной b ´ l прямоугольной b ´ l под рядовые колонны bcf ´ lcf под колонны в температурных швах bcf ´lcf
1,5 0,3 0,3 1,5´1,5 1,5´1,8 0,6´0,6 0,6´1,8
1,8 0,6 0,3 0,3 1,8´1,8 1,8´2,1 0,6´0,9 0,9´2,1
2,1 0,9 0,3 0,3 0,3 2,1´2,1 1,8´2,4 0,9´0,9 1,2´2,1
2,4 1,2 0,3 0,3 0,6 2,4´2,4 2,1´2,7 0,9´1,2 1,5´2,1
2,7 1,5 0,3 0,6 0,6 2,7´2,7 2,4´3,0 0,9´1,5 1,8´2,1
3,0 1,8 0,6 0,6 0,6 3,0´3,0 2,7´3,3 1,2´1,2 2,1´2,1
3,6 3,6´3,6 3,0´3,6 1,2´1,5 2,1´2,4
4,2 4,2´4,2 3,3´3,9 1,2´1,8 2,1´2,7
Далее с шагом 4,8´4,8 3,6´4,2 1,2´2,1
5,4´5,4 3,9´4,5 1,2´2,4
0,3 м 4,2´4,8 1,2´2,7
или 4,5´5,1
0,6 4,8´5,4
5,1´5,7
5,4´6,0

Предварительно назначаем фундамент 1,5х1,5=2,25 м², что больше предварительного минимума 0,72 м².

Расчёт максимального и минимального краевого давления

Максимальное и минимальное краевое давление находим по формуле 5.11 СП 22.13330.2016

Где N=21,3т=213 кН вертикальная нагрузка от колонны в кН;

Аф=2,25 м² – площадь фундамента, м²;

γmt – средневзвешенное значение удельных весов тела фундамента, грунтов и полов, принимаемое 20 кН/м³;

d=2 – глубина заложения фундамента, м;

M-момент от равнодействующей всех нагрузок, действующий по подошве фундамента в кН*м, находим по формуле:

W – момент сопротивления подошвы фундамента, м³. Для прямоугольного сечения находится по формуле W=bl²/6 где в нашем случае b – это сторона подошвы фундамента вдоль буквенной оси, l – длина стороны подошвы фундамента вдоль цифровой оси (см. картинку ниже).

Т.к. предварительно мы приняли фундамент с размерами 1,5х1,5 м, то

W= bl²/6=1.5*1.5²/6=0.5625 м³

При действии вертикальной нагрузки на фундамент совместно с изгибающим моментом у нас может быть 3 варианта эпюр давления на грунты:

  1. Треугольная с отрывом края фундамента

Нельзя допускать, чтобы происходил отрыв фундамента, т.е. Pmin всегда должен быть ≥0.

В нашем случае Pmin 0,5 1,1 1,0 1,0 Примечания

1 К сооружениям с жесткой конструктивной схемой относят сооружения, конструкции которых специально приспособлены к восприятию усилий от деформации оснований, в том числе за счет мероприятий, указанных в 5.9.

2 Для зданий с гибкой конструктивной схемой значение коэффициента γс2 принимают равным единице.

3 При промежуточных значениях L/H коэффициент γс2 определяют интерполяцией.

4 Для рыхлых песков γс1 и γс2 , принимают равными единице.

k=1 (п.5.6.7 СП 22.13330.2016 коэффициент, принимаемый равным единице, если прочностные характеристики грунта (φII и СII ) определены непосредственными испытаниями, и k=1,1, если они приняты по таблицам приложения А).

My=1,68 (таблица 5.5 СП 22.13330.2016)

Mq=7,71 (таблица 5.5 СП 22.13330.2016)

Mc=9,58 (таблица 5.5 СП 22.13330.2016)

Тут хочу обратить внимание, несмотря на то, что мы опираемся на грунт ИГЭ-3, грунт ИГЭ-2 имеет более низкие прочностные характеристики и он заложен ниже грунта ИГЭ-3, поэтому мы принимаем считаем несущую способность основания по ИГЭ-2.

Таблица 5.5 СП 22.13330.2016

Угол внутреннего трения φII, град. Коэффициенты
My Mq Mc
0 0 1,00 3,14
1 0,01 1,06 3,23
2 0,03 1,12 3,32
3 0,04 1,18 3,41
4 0,06 1,25 3,51
5 0,08 1,32 3,61
6 0,10 1,39 3,71
7 0,12 1,47 3,82
8 0,14 1,55 3,93
9 0,16 1,64 4,05
10 0,18 1,73 4,17
11 0,21 1,83 4,29
12 0,23 1,94 4,42
13 0,26 2,05 4,55
14 0,29 2,17 4,69
15 0,32 2,30 4,84
16 0,36 2,43 4,99
17 0,39 2,57 5,15
18 0,43 2,73 5,31
19 0,47 2,89 5,48
20 0,51 3,06 5,66
21 0,56 3,24 5,84
22 0,61 3,44 6,04
23 0,66 3,65 6,24
24 0,72 3,87 6,45
25 0,78 4,11 6,67
26 0,84 4,37 6,90
27 0,91 4,64 7,14
28 0,98 4,93 7,40
29 1,06 5,25 7,67
30 1,15 5,59 7,95
31 1,24 5,95 8,24
32 1,34 6,34 8,55
33 1,44 6,76 8,88
34 1,55 7,22 9,22
35 1,68 7,71 9,58
36 1,81 8,24 9,97
37 1,95 8,81 10,37
38 2,11 9,44 10,80
39 2,28 10,11 11,25
40 2,46 10,85 11,73
41 2,66 11,64 12,24
42 2,88 12,51 12,79
43 3,12 13,46 13,37
44 3,38 14,50 13,98
45 3,66 15,64 14,64

kz=1 (п.5.6.7 СП 22.13330.2016 коэффициент, принимаемый равным единице при b 150 кПа, поэтому увеличивать размеры фундамента нет необходимости.

Следовательно, фундамент удовлетворяет требованиям по несущей способности основания.

После этого нужно сконструировать фундамент, назначить размеры, арматуру, бетон, что обязательно рассмотрю в следующих статьях.

Расчётную программу в Excel можно скачать по ссылке

This article has 3 Comments

Для всех типов фундаментов для ввода нагрузок на основания применяются результаты статического расчета от действия какого-либо загружения или комбинации загружений. В качестве альтернативы возможен и «ручной» ввод в соответствии с расчетной схемой.

Большое спасибо за программку! Очень сократили время расчетов!

Источник

Оцените статью