- Практические методы расчета конечных деформаций оснований фундаментов
- Практические методы расчета конечных деформаций оснований фкндаментов
- Практические методы расчета конечных деформаций оснований фкндаментов
- Практические методы расчета конечных деформаций оснований фкндаментов.
- 5.2. Практические методы расчета конечных деформаций оснований фкндаментов.
- 5.2.1. Расчёт осадок методом послойного суммирования.
- 5.2.2. Расчет осадок методом эквивалентного слоя
- Лекция 9.
- 5.3. Практические методы расчёта осадок оснований фундаментов во времени.
Практические методы расчета конечных деформаций оснований фундаментов
Расчет осадок методом послойного суммирования.
Этот метод (без возможности бокового расширения грунта) рекомендован СНиП 2.02.01 — 83 и является основным при расчетах осадок фундаментов промышленных зданий и гражданских сооружений. Ниже рассматриваются порядок вспомогательных построений и последовательность расчетов применительно к расчетной схеме на рисунке.
Вначале производится привязка фундамента к инженерно-геологической ситуации основания, т. е. совмещение его оси. При известных нагрузках от сооружения определяется среднее давление на основание по подошве фундамента р. Затем по правилам, приведенным в § 5.4, начиная от поверхности природного рельефа строится эпюра природного давления по оси фундамента. Зная природное давление в уровне подошвы фундамента, определяют дополнительное вертикальное напряжение в плоскости подошвы фундамента. В соответствии с изложенным в том же масштабе строят эпюру дополнительных напряжений по оси фундамента.
Построив эпюры природного давления и дополнительного напряжения, находят нижнюю границу сжимаемой толщи. Эту операцию удобно выполнять графически, для чего эпюру природного давления, уменьшенную в 5 или 10 раз (в зависимости от условия ограничения сжимаемой толщи), совмещают с эпюрой дополнительных напряжений. Точка пересечения линий, ограничивающих эти эпюры, и определит положение нижней границы сжимаемой толщи.
Сжимаемую толщу основания разбивают на элементарные слои так, чтобы в пределах каждого слоя грунт был однородным. Обычно толщину каждого элементарного слоя принимают не более 0.5. Зная дополнительное напряжение в середине каждого элементарного слоя, определяют сжатие этого слоя. Нормы допускают принимать значения безразмерного коэффициента р равным 0,8.
Глубина заложения подошвы фундамента под наружную стену в подвале
Пол в подвале по грунту. Отметка пола подвала – 2,5 м. От метка планировки – 1,05 м. Глубина заложения подошвы фундамента должна на 0,5 м ниже уровня пола в подвале. При толщине стены 0,51 м приняты фундаментные блоки марки ФБС – 24,66 (длина – 2,4 м, ширина и высота – 0,6 м, масса – 19,6 кН). Толщина фу .
Калькуляция себестоимости научно-технической продукции
Калькулирование себестоимости научно-технической продукции производится согласно «Типовым методическим рекомендациям по планированию, учету и калькулированию себестоимости научно-технической продукции» (утв. Миннауки от 15.06.1994 РФ №ОР-22-2-46) . 1. Материалы. Таблица 4.2 Наименование материальных з .
Заземление
Заземляющее устройство выполнить в соответствии с главой 1.7 ПУЭ – 85. Перенапряжения в электрических сетях могут быть грозовыми, возникающими при ударах молнии, например, в линию электропередачи или вблизи неё, и внутренними, которые связаны с коммутациями в аппаратах управления, дуговыми замыканиями на з .
Источник
Практические методы расчета конечных деформаций оснований фкндаментов
5.2.1. Расчёт осадок методом послойного суммирования.
Метод послойного суммирования (без учёта возможности бокового расширения грунта) рекомендован СНиП 2.02.01-83*.
На рис. 5.3. представлена расчётная схема метода.
Алгоритм расчёта:
Производится привязка фундамента к инженерно-геологической ситуации основания, т.е. совмещение его оси с литологической колонкой грунтов.
Определяется среднее давление на основание по подошве фундамента р.
Строится эпюра природного давления по оси фундамента.
Определяется дополнительное вертикальное напряжение в плоскости подошвы фундамента: , где
— природное давление в уровне подошвы фундамента.
Строится эпюра дополнительных напряжений .
Строится вспомогательная эпюра природного давления 0,2.
Определяют нижнюю границу сжимаемой толщи из условия 0,2=
.
Сжимаемую толщу основания разбивают на элементарные слои толщиной hi так, чтобы в пределах каждого слоя грунт был однородным, hi принимают не более 0,4b.
Зная дополнительное напряжение в середине каждого элементарного слоя , определяют сжатие этого слоя.
Общая осадка фундамента находится как сумма величин сжатия каждого элементарного слоя в пределах сжимаемой толщи:
(5.9) |
где n – число слоёв; hi – толщина i-го слоя; Еi и mν,i – модуль деформации и коэф. относительной сжимаемости i-го слоя соответственно; β=0,8.
Источник
Практические методы расчета конечных деформаций оснований фкндаментов
5.2.1. Расчёт осадок методом послойного суммирования.
Метод послойного суммирования (без учёта возможности бокового расширения грунта) рекомендован СНиП 2.02.01-83*.
На рис. 5.3. представлена расчётная схема метода.
Алгоритм расчёта:
Производится привязка фундамента к инженерно-геологической ситуации основания, т.е. совмещение его оси с литологической колонкой грунтов.
Определяется среднее давление на основание по подошве фундамента р.
Строится эпюра природного давления по оси фундамента.
Определяется дополнительное вертикальное напряжение в плоскости подошвы фундамента: , где
— природное давление в уровне подошвы фундамента.
Строится эпюра дополнительных напряжений .
Строится вспомогательная эпюра природного давления 0,2.
Определяют нижнюю границу сжимаемой толщи из условия 0,2=
.
Сжимаемую толщу основания разбивают на элементарные слои толщиной hi так, чтобы в пределах каждого слоя грунт был однородным, hi принимают не более 0,4b.
Зная дополнительное напряжение в середине каждого элементарного слоя , определяют сжатие этого слоя.
Общая осадка фундамента находится как сумма величин сжатия каждого элементарного слоя в пределах сжимаемой толщи:
(5.9) |
где n – число слоёв; hi – толщина i-го слоя; Еi и mν,i – модуль деформации и коэф. относительной сжимаемости i-го слоя соответственно; β=0,8.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник
Практические методы расчета конечных деформаций оснований фкндаментов.
5.2.1. Расчёт осадок методом послойного суммирования.
Метод послойного суммирования (без учёта возможности бокового расширения грунта) рекомендован СНиП 2.02.01-83*.
На рис. 5.3. представлена расчётная схема метода.
Алгоритм расчёта:
Производится привязка фундамента к инженерно-геологической ситуации основания, т.е. совмещение его оси с литологической колонкой грунтов.
Определяется среднее давление на основание по подошве фундамента р.
Строится эпюра природного давления по оси фундамента.
Определяется дополнительное вертикальное напряжение в плоскости подошвы фундамента: , где
— природное давление в уровне подошвы фундамента.
Строится эпюра дополнительных напряжений .
Строится вспомогательная эпюра природного давления 0,2 .
Определяют нижнюю границу сжимаемой толщи из условия 0,2 =
.
Сжимаемую толщу основания разбивают на элементарные слои толщиной hi так, чтобы в пределах каждого слоя грунт был однородным, hi принимают не более 0,4b.
Зная дополнительное напряжение в середине каждого элементарного слоя , определяют сжатие этого слоя.
Общая осадка фундамента находится как сумма величин сжатия каждого элементарного слоя в пределах сжимаемой толщи:
| (5.9) |
где n – число слоёв; hi – толщина i-го слоя; Еi и mν,i – модуль деформации и коэф. относительной сжимаемости i-го слоя соответственно; β=0,8.
Источник
5.2. Практические методы расчета конечных деформаций оснований фкндаментов.
5.2.1. Расчёт осадок методом послойного суммирования.
Метод послойного суммирования (без учёта возможности бокового расширения грунта) рекомендован СНиП 2.02.01-83*.
На рис. 5.3. представлена расчётная схема метода.
Алгоритм расчёта:
Производится привязка фундамента к инженерно-геологической ситуации основания, т.е. совмещение его оси с литологической колонкой грунтов.
Определяется среднее давление на основание по подошве фундамента р.
Строится эпюра природного давления по оси фундамента.
Определяется дополнительное вертикальное напряжение в плоскости подошвы фундамента: , где
— природное давление в уровне подошвы фундамента.
Строится эпюра дополнительных напряжений .
Строится вспомогательная эпюра природного давления 0,2.
Определяют нижнюю границу сжимаемой толщи из условия 0,2=
.
Сжимаемую толщу основания разбивают на элементарные слои толщиной hi так, чтобы в пределах каждого слоя грунт был однородным, hi принимают не более 0,4b.
Зная дополнительное напряжение в середине каждого элементарного слоя , определяют сжатие этого слоя.
Общая осадка фундамента находится как сумма величин сжатия каждого элементарного слоя в пределах сжимаемой толщи:
или
,
где n – число слоёв; hi – толщина i-го слоя; Еi и mν,i – модуль деформации и коэф. относительной сжимаемости i-го слоя соответственно; β=0,8.
5.2.2. Расчет осадок методом эквивалентного слоя
Эквивалентный слой – это слой грунта толщиной hэ, осадка которого при сплошной нагрузке на поверхности р0 будет равна осадке грунтового полупространства под воздействием местной нагрузки той же интенсивности.
Осадку слоя грунта толщиной hэ при сплошной нагрузке можно определить из условия одномерного его сжатия без возможности бокового расширения. Тогда осадка всего слоя
Или, используя относительный коэффициент сжимаемости грунтов
Осадка поверхности грунтового полупространства под действием местной нагрузки будет равна:
.
Приравнивая (10) и (11), получим
Или, обозначив , окончательно
Толщина эквивалентного слоя грунта зависит от коэффициента Пуассона ν, коэффициента формы площади и жесткости фундамента ω и его ширины b. Сочетание называется коэффициентом эквивалентного слоя, значения которого для разных грунтов приводятся в таблицах.
Для однородного основания осадка определяется по формуле (10)
Для многослойных оснований требуется определить средневзвешенные характеристики деформируемости грунтов в пределах эквивалентного слоя.
Значение средневзвешенного относительного коэффициента сжимаемости слоистого основания:
Осадка многослойного основания:
Лекция 9.
5.3. Практические методы расчёта осадок оснований фундаментов во времени.
Если в основании фундаментов залегают водонасыщенные глинистые грунты, осадка может развиваться в течении длительного периода времени. Временной процесс развития осадок связан с малой скоростью фильтрации воды в глинистых грунтах и обусловленным этим медленным уплотнением водонасыщенных грунтов.
Методы прогноза развития деформаций грунтов во времени основаны на теории фильтрационной консолидации, в основу которой положены следующие предпосылки:
— скелет грунта рассматривается как упругая пористая среда, действует компрессионный закон уплотнения ;
— поровая вода абсолютно несжимаемая;
— отжатие воды из пор грунта подчиняется закону ламинарной фильтрации Дарси ;
— внешняя нагрузка уравновешивается суммой напряжений в скелете грунта (эффективное напряжение) и в поровой воде
, т.е.
.
Основные расчётные случаи (рис. 5. .).
Случай 0 – одномерное уплотнение слоя грунта под действием сплошной нагрузки.
Случай 1 – сжимающие напряжения увеличиваются с глубиной по закону треугольника. Случай соответствует уплотнению свежеотсыпанного слоя водонасыщенного грунта под действием собственного веса.
Случай 2 — сжимающие напряжения уменьшаются с глубиной по закону треугольника. Случай соответствует виду эпюры дополнительных напряжений по оси фундамента, принятой в методе эквивалентного слоя.
Источник