Фундаменты насосов
Фундамент под насос это единый узел, который обеспечивает поддержание всего насосного агрегата и состоит из основания, подушки и соединительной секции. Нормальная работа насоса гарантируется только при соблюдении строго регламентированных правил изготовления фундамента. В противном случае официальная гарантия производителя аннулируется, и ремонт производится только на платной основе.
Грамотный расчёт системы виброизоляции фундамента насоса позволяет снизить уровень передаваемой на несущую конструкцию вибрации, что в свою очередь снижает уровни структурного шума в жилых и общественных помещениях, расположенных вблизи места установки насосного оборудования.
Принципы устройства фундаментов под насосы
Для строительства фундамента под насосный агрегат подходит бетон М100, железобетон, бутовый камень, также может использоваться и кирпич, если укладка производится выше уровня грунтовых вод. Выбирать материал необходимо исходя из размера оборудования, его мощности и свойств грунта.
Глубина заложения зависит от расположения трубопроводов и глубины промерзания грунта. В нормальных почвах она принимается около полуметра. В глинистых же может достигать 1,25 – 1,5 метров. Над уровнем пола кладка возвышается на 15-20 см.
Устройство фундаментов под насосы предполагает разрывы между плитами отдельных агрегатов, а в местах соприкосновения с полом необходимы осадочные швы. На поверхности основания монтируются бортики, трубки и желобки для сбора просочившейся воды.
Остальные нюансы монтажа содержатся в чертеже фундамента под насос, который идет в комплектации каждого устройства.
Ошибки в проектировании
|
На картинках представлено два варианта устройства фундамента под насос. При установке насосов на гибкие фундаменты (как показано на левом рисунке) происходят их колебания при работе насоса, что приводит к возникновению дополнительной вибрации в местах крепления к основанию. Кроме того повышенная вибрация насоса, вызванная его неправильной установкой, повышает нагрузки на опорные элементы валов насосов, крыльчаток, что приводит к их преждевренному выходу из строя. Плита-основание насоса должна иметь опору по всей поверхности. В некоторых случаях рекомендуется устройство дополнительных виброизолирующих элементов для снижения уровней передаваемых на несущую конструкцию колебаний.
Состав задания на проектирование
Расчёт и проектирование фундаментов под насосы осуществляется с применением действующих нормативных документов (например, СП26 и СП51), а также с учётом рекомендаций производителей насосов (Grundfos, Wilo и т.д.).
Для расчёта и проектирования фундамента для насоса, а также оценки уровней структурного шума, шума передаваемого через перекрытия в жилые и общественные помещения, а также вибрации в указанных помещениях необходимы следующие параметры:
— тип насоса (вертикальный/горизонтальный/устанавливаемый на трубопроводе) с указанием характеристик рабочего органа (число лопаток, характеристики редуктора при наличии, тип подшипников и т.д.);
— мощность и рабочая частота насоса;
— вес и габаритные параметры насоса;
— вес и чертёж рамы под насос с указанием её габаритных параметров;
— уровень излучаемой звуковой мощности (в октавных полосах);
— уровень вибрации на опорах насоса (в октавных полосах).
В случае отсутствия каких-либо из указанных параметров, специалисты компании «VibroLAB» могут при необходимости выехать на место и провести указанные замеры на оборудовании заказчика или на объекте-аналоге.
Сделать заказ или задать интересующие Вас вопросы вы можете по форме.
Источник
Пример расчета фундамента под оборудование
|
Рисунок 9 – Площадь подошвы фундамента
Данные для расчета.
Вес аппарата, кН | Gм = 14,7; |
Расстояние между осями фундаментных болтов, мм | А = 1880 В = 1300; |
Высота наземной части фундамента, мм | Н1 = 100; |
Глубина заложения фундамента, мм | Н2 = 500 |
Нормативное давление на грунт, кПа | Rн = 200; |
Коэффициент уменьшения* | α = 0,5; |
Удельный вес бетона, кН/м 3 | γ = 20. |
*Учитывают степень динамичности машин с помощью коэффициента «α», изменяющегося от 0,3 до 1. Чем выше степень динамичности, тем меньше значение коэффициента «α» (приложение В).
1. Фундамент не должен давать значительной осадки, что достигается, если фактическое давление на грунт Р, кПа, основания системы «аппарат + фундамент» будет меньше нормативного
Р = (Gм + Gф)/(α F) ≤ Rн , | (45) |
где Gм – вес фундамента:
Gм = V γ | (46) |
V – объем фундамента, м 3
V = F∙Н, | (47) |
Н – общая высота фундамента, м
Н = Н1 + Н2 | (48) |
Н = 100 + 500 = 600 мм = 0,6 м
F – площадь фундамента, м 2
F = (А + 2∆) (В + 2∆) | (49) |
∆ — припуск на каждую сторону, ∆ = 0,1 м
F = (1880 + 2∙0,1)(1300 + 2∙0,1) = 6,36 м 2
V = 6,36∙0,6 = 3,8м 3
Р = (14,7 + 76)/0,5∙6,36 = 28,5 кН
2. Определяем возможное отклонение оси аппарата от оси фундамента – эксцентриситеты е и е1, которые не должны превышать 5% от соответствующей стороны фундамента
Из пропорций находим предельные эксцентриситеты е и е1, мм
е = 2080∙5/100 = 104мм
е1 = 1500∙5/100 = 75 мм
Расчет приспособлений для монтажа оборудования.
Расчет строп.
Стропы из стальных канатов применяются для соединения монтажных полиспастов с подъемно-транспортными средствами, якорями и строительными конструкциями, а также для строповки поднимаемого или перемещаемого оборудования и конструкций с подъемно-транспортными механизмами.
Для строповки тяжеловесного оборудования преимущественно используются инвентарные витые стропы, выполняемые в виде замкнутой петли, путем последовательной параллельной укладки перевитых между собой витков каната вокруг начального центрального витка. Эти стропы имеют ряд преимуществ: равномерность распределения нагрузки на все ветви, сокращение расхода каната, меньшая трудоемкость строповки. Технические данные рекомендуемых типов канатов приведены в приложении Г (таблица 1).
Канатные стропы рассчитываются в следующем порядке (рисунок 10).
1. Определяем натяжение в одной ветви стропа, кН:
| (50) |
где P – расчетное усилие, приложенное к стропу, без учета коэффициентов перегрузки и динамичности, кН;
m – общее количество ветвей стропа;
— угол между направлением действия расчетного усилия и ветвью стропа, которым задаемся исходя из поперечных размеров поднимаемого оборудования и способа строповки (этот угол рекомендуется назначать не более 45⁰, имея ввиду, что с его увеличением усилие в ветви стропа резко возрастает).
2. Находим разрывное усилие в ветви стропа, кН:
| (51) |
где kз— коэффициент запаса прочности для стропа, в зависимости от типа стропа (приложении Г(таблица 2)).
3. По расчетному разрывному усилию, пользуясь таблицей 1.приложения Г, подбираем наиболее гибкий стальной канат и определяем его технические данные: тип и конструкцию, временное сопротивление разрыву, разрывное усилие и диаметр.
Рисунок 10. Расчетная схема.
Рассчитать стальной канат для стропа, применяемого при подъеме при подъеме горизонтального цилиндрического теплообменного аппарата массой Go=15000кг.
1. Определить натяжение одной ветви стропа, задаваясь общим количеством ветвей m = 4 и углом наклона их =45⁰ к направлению действия расчетного усилия P.
2. Находим разрывное усилие в ветви стропа.
3. По найденному разрывному усилию, пользуясь приложением Г (таблица 1), подбираем канат типа ЛК-РО конструкции 6х36(1+7+7/7+14) о.с. (ГОСТ7668-80) с характеристика:
временное сопротивление разрыву, МПа…………………..1960
масса 1000м каната, кг………………………………………. 2130
Расчет траверс.
В практике монтажа оборудования применяются траверсы двух видов – работающие на изгиб и на сжатие. Первые конструктивно более тяжелые, но обладают значительно меньшими высотными габаритами, что имеет существенное значение при подъеме оборудования в помещениях с ограниченной высотой, а также при недостаточных высотах подъема крюка грузоподъемного механизма.
Расчет траверс, работающих на изгиб.
1. Подсчитываем нагрузку, действующую на траверсу, кН
| (52) |
где GO – масса поднимаемого груза, кг,
2. Определяем изгибающий момент в траверсе,
| (53) |
где а – длина плеча траверсы, см.
3. Вычисляем требуемый момент сопротивления поперечного сечения траверсы, см 3 .
| (54) |
где m и R выбирают по приложению Г (таблицы 3 и 4).
Рисунок 11. Расчетная схема траверсы, работающей на изгиб.
4. Выбираем для траверсы сплошного сечения одиночный швеллер, двутавр или сплошную трубу, и по приложению Г (таблицы 5, 6, 7) определяем момент сопротивления WX, ближайший больший к WТР. В случае невозможности изготовления траверсы большого сечения при больших значениях WТР балки траверсы изготавливаются либо сквозного сечения из парных швеллеров или двутавров, а также из труб, усиленных элементами жесткости, либо, наконец, решетчатой конструкции.
Подобрать и рассчитать сечение балки траверсы, работающей на изгиб, для подъема ротора турбины массой GO =24тонны с расстоянием между стальными подвесками l = 4м (рисунок 11).
1. Подсчитываем нагрузку, действующую на траверсу:
2. Определяем изгибающий момент в траверсе:
3. Вычисляем требуемый момент сопротивления поперечного сечения траверсы:
4. Выбираем по табличным данным конструкцию балки траверсы сквозного сечения, состоящую из двух двутавров, соединенных стальными мостиками на сварке.
5. Подбираем по таблице ГОСТ (приложение Г таблица 5) два двутавра №40 с =953 см 3 , определяем момент сопротивления сечения траверсы в целом:
> WТР=1624 см 3
что удовлетворяет условию прочности расчетного сечения траверсы.
Дата добавления: 2018-05-12 ; просмотров: 10259 ; Мы поможем в написании вашей работы!
Источник
фундамент под насосы
Страница 1 из 2 | 1 | 2 | > |
02.07.2010, 22:43
Механизатор широкого профиля (б/у)
А в паспорте на насосы разве нет раздела типа «Требования к фундаменту»? Виброизоляция не нужна?
Если «нет», и если верх фундаментов на уровне пола — см. по расходу бетона.
Если фундаменты возвышаются над полом — подойдите с точки зрения удобства обслуживания при эксплуатации насосов: как будет удобнее ходить между насосами, ремонтировать их — когда все насосы на одном фундаменте, или когда каждый на своем?
03.07.2010, 07:26
03.07.2010, 08:19
03.07.2010, 10:39
03.07.2010, 10:55
Механизатор широкого профиля (б/у)
2 м — это по оси? Или зазор в свету?
Если по оси — то, с учетом мощности эл/двигателя, можно предположить, что зазор между фундаментами мизерный, и, чтобы не играться с опалубкой, проще сделать один общий фундамент.
Если зазор 2 м между насосами — то, опять таки предположительно, чтобы не расходовать зря бетон, лучше сделать отдельные фундаменты.
Еще один фактор — возможная вибрация. Мощность 1600 кВт — это ого-го! При работе одного насоса его вибрация может передаваться соседнему, резервному. В результате даже неработающий насос подвергается вибрационным нагрузкам, что не может не сказаться на его долговечности.
Поэтому, ЯТД, даже при обустройстве общего фундамента, даже если разработчик/изготовитель этого не требует, стОит предусмотреть виброизоляцию (разрывы в бетоне) между фундаментами отдельных насосов.
Источник