Программа для расчета фундаментов опор ЛЭП по пособию к СНиП 2.02.01-83. Excel
размещено: 02 Июня 2017
обновлено: 22 Августа 2017
Выкладываю экселевскую программку которую делал для себя, может быть кому-то пригодится: «как говориться на свой страх и риск» )))) В ней использовал программу экселевскую для определения расчетного сопротивления грунта, к сожалению, не помню от кого, но точно от кого-то с данного ресурса. Все выполнено согласно главы пособия к СНиП 2.02.01-83 11 ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ОСНОВАНИИ ОПОР ВОЗДУШНЫХ ЛИНИЯ ЭЛЕКТРОПЕРЕДАЧИ подглавы: Расчет оснований по деформациям; Расчет оснований по устойчивости. В файле четыре закладки между собой они не связаны (кроме пятой). Забиваются исходные данные только в цветные ячейки (кроме главных формул, которые выделены соответствующим цветом). Думаю, интуитивно можно разобраться.
Два важных нюанса заключаются в том, что (в закладке «по деформациям_расчет_Fn+Q+М»):
1. Можно завести данные только для одного фундамента, а нагрузки от опоры ЛЭП можно заводить как для сжатого, так и для вырываемого фундамента и дальнейший расчет будет производиться, проверяя данный фундамент на сжатие и на вырывание;
2. Если вводятся данные по ригелю в расчет он их берет в обоих направлениях (Х и У) причем на одной и той же высоте (что в принципе не возможно) т.е. для проверки фундамента с ригелем для другого направления нужно будет изменить глубину заложения ригеля и посмотреть результаты расчета. И если для какого-то направлению ригель не нужен, то нужно его исключить (обнулить ячейки исх.данных) и отдельно смотреть на результаты.
В общем данная программа — это «быстрый калькулятор» по выше описанному пособию.
Источник
Проектирование металлических опор ЛЭП и фундаментов
ИНФОРМАЦИЯ ПО РАЗДЕЛУ:
Проектирование металлических опор ЛЭП и фундаментов
Исходные данные для проектирования металлических опор ЛЭП и фундаментов
Типовые унифицированные опоры ЛЭП зачастую не удовлетворяют всем требованиям, которые предъявляются при прокладке линии электропередачи в конкретных специфических условиях. Специфика линии или трассы требует внесение соответствующих конструктивных изменений в проект опорной конструкции или же разработку нового решения. Индивидуальное проектирование опор ЛЭП позволяет учесть все особенности — от дизайна конструкции до возможности ведения того или иного метода монтажа.
Металлические опоры ЛЭП и фундаменты к ним проектируются на основе и с учётом:
- результатов инженерно-геологических изысканий для строительства;
- сведений о сейсмичности района строительства;
- данных, характеризующих назначение, конструктивные и технологические особенности металлических опор и фундаментов и условий их эксплуатации;
- действующих на стальные многогранные опоры и фундаменты нагрузок;
- условий существующей застройки и влияния на неё нового строительства;
- экологических требований;
- размеров земельных участков для размещения конструкций ВЛ;
- технико-экономического сравнения возможных вариантов проектных решений для принятия варианта, обеспечивающего наиболее эффективное использование стальных опор и фундаментов.
Конструктивные особенности многогранных опор ЛЭП
Оцинкованные металлические опоры ВЛ с телескопическим соединением имеют детали для стягивания секций и обеспечения плотной посадки. Стягивание секций рекомендуется производить возрастающей нагрузкой с шагом, зависящим от диаметра соединяемых секций, до прекращения перемещения секций относительно друг друга.
В конструкциях опор электропередач используются фланцевые соединения с расположением болтов по окружности (в стыках секций стоек между собой и с фундаментом) и по контуру прямоугольника (в узлах примыкания многогранных траверс к стойке опоры).
Фланцевое соединение секций стойки между собой обеспечивает точное соответствие высоты стойки, полученной при монтаже опоры, её проектному значению.
Многогранные опоры ВЛ повторяют классификацию типовых металлических опор ЛЭП в соответствии с ПУЭ.
По конструктивному решению многогранные опоры могут быть свободно стоящими и опорами на оттяжках.
Свободностоящие многогранные столбы ЛЭП могут быть одностоечными или многостоечными (двух- и трёхстоечными).
Двухстоечные свободностоящие многогранные опоры могут быть портальными с внутренними связями: гибкими или жёсткими.
По типу соединения секций между собой многогранные опоры разделяются на опоры с телескопическим и опоры с фланцевым соединениями.
Траверсы оцинкованных опор могут быть выполнены многогранными, решётчатыми или изолирующими. В случае многогранного исполнения траверс их соединение со стойкой опоры выполняется фланцевым. Многогранные траверсы могут крепиться к стойке опоры перпендикулярно или наклонно вверх или вниз. Сами многогранные траверсы могут быть прямыми или изогнутыми.
В случае решётчатого исполнения траверс, соединения траверс со стойкой и элементов траверс между собой выполняются болтовыми.
Изолирующие траверсы, предназначенные для изоляции и крепления проводов к опоре, крепятся к стойке многогранной опоры с помощью специально разработанных узлов крепления на основе сварного и болтового соединений.
Провода фаз могут крепиться к траверсам с использованием изоляторов или непосредственно к изолирующим траверсам.
При креплении проводов фаз с использованием изоляторов возможны следующие варианты: вертикальная, V-образная и Λ-образная гирлянды изоляторов. V-образные гирлянды изоляторов располагаются поперёк оси ВЛ в межфазном пространстве. Λ-образные гирлянды располагаются вдоль оси ВЛ.
Проектирование фундаментов опор ЛЭП
- из одиночных стальных свай-оболочек;
- из одиночных буронабивных свай;
- свайные из винтовых свай с металлическим ростверком;
- свайные из стальных свай-оболочек с металлическим ростверком;
- с монолитным железобетонным ростверком из винтовых, забивных или буронабивных свай, стальных свай-оболочек;
- монолитные.
Свая-оболочка, усиленная двумя ригелями
Монолитный и металлический ростверк с винтовыми сваями
Конструирование фундаментов многогранных опор
Отличительной особенностью закрепления многогранных одностоечных опор является значительная концентрация усилий на кольцевой базе ствола опоры. Основной расчётной нагрузкой на фундамент многогранной опоры является изгибающий момент в уровне поверхности грунта.
Для восприятия больших величин изгибающих моментов рекомендуется конструировать свайные фундаменты из одиночных свай большого диаметра (свай-оболочек или буронабивных свай) или многосвайные фундаменты с максимально возможным расстоянием между сваями.
Число свай в фундаменте и их размеры следует назначать из условия максимального использования прочности материала свай и грунтов основания при расчётной нагрузке, допускаемой на сваю.
При конструировании свайных фундаментов необходимо соблюдать условие ограничения минимального расстояния между сваями: расстояние между осями свай должно быть не менее 3-х диаметров сваи. Для винтовых свай расстояние должно быть не менее 3-х диаметров лопасти сваи.
Фундаменты из буронабивных свай большого диаметра следует проектировать преимущественно в виде одиночных свай.
Фундаменты из стальных свай-оболочек в зависимости от действующих нагрузок следует проектировать в виде одиночных свай или свайных кустов. Рекомендуемое количество стальных свай-оболочек в кустах: две, три, четыре, шесть и более.
Фундаменты из винтовых свай следует проектировать в виде свайных кустов. Рекомендуемое количество винтовых свай в кустах: две, три, четыре, шесть и более.
Выбор длины свай должен производиться в зависимости от грунтовых условий строительной площадки.
При проектировании фундаментов из стальных свай-оболочек и буронабивных свай большого диаметра необходимую несущую способность свай рекомендуется обеспечивать за счёт увеличения глубины погружения сваи, а не за счёт увеличения её диаметра.
В песках, а также в твёрдых, полутвёрдых и тугопластичных глинистых грунтах рекомендуется применять безригельное закрепление.
Стальные сваи-оболочки в этих случаях рекомендуется погружать с минимальным нарушением структуры грунта (без выемки грунта или с устройством скважины диаметром, равным диаметру стальной сваи-оболочки).
При применении фундаментов с ригелями ригели должны быть установлены перпендикулярно равнодействующей нагрузок на опору. Направление равнодействующей нагрузок на опору при одинаковом тяжении проводов и тросов в смежных пролётах совпадает с биссектрисой угла, смежного с углом поворота трассы ВЛ.
В зависимости от конструктивных особенностей закрепляемой опоры применяются фундаменты с монолитным железобетонным или металлическим ростверками.
Железобетонные ростверки применяют для обеспечения жёсткости фундамента, а также для уменьшения давления на грунт при восприятии больших величин изгибающих моментов.
Металлические ростверки применяют для фундаментов из стальных свай-оболочек и винтовых свай.
Железобетонный или металлический ростверк может быть расположен ниже уровня поверхности земли для улучшения эстетического вида фундамента (видна только его опорная часть) и его экологичности (на поверхности земли проектируются зелёные насаждения), уменьшения землеотвода. В этом случае необходимо принять дополнительные меры по гидроизоляции и защите от коррозии расположенных ниже уровня поверхности земли элементов фундамента.
При строительстве на пучинистых грунтах необходимо предусматривать меры, предотвращающие или уменьшающие влияние сил морозного пучения грунта на фундаментную конструкцию.
При проектировании фундаментов из стальных свай-оболочек и буронабивных свай на основаниях, включающих органо-минеральные и органические грунты, следует назначать глубину погружения нижних концов свай больше глубины заложения слоёв этих грунтов. Расчёт фундаментной конструкции должен проводиться по схеме высокого свайного ростверка без учёта несущей способности органо-минеральных и органических грунтов.
Источник
Фундаменты опор ВЛ
«Справочник по строительству и реконструкции линий электропередачи напряжением 0,4–750 кВ / под ред. Е. Г. Гологорского.» считаю одним из лучших пособий для сметчика, т.к. в нем дано очень много нужной для сметчика информации.
Представлю несколько фрагментов из этой книги со своими комментариями.
Конструкция фундаментов выбирается в соответствии с типом опоры, действующей на фундамент нагрузкой, а также характеристикой грунта, в который будет заделан фундамент.
В качестве фундаментов опор применяются монолитный бетон, сборный железобетон, сваи и в некоторых случаях – металлические фундаменты. У железобетонных опор, нижний конец стойки которых заделывается в грунт, фундаментом служит низ стойки, иногда усиленный ригелями.
Деревянные опоры всех типов устанавливаются без фундаментов.
Для стальных и некоторых видов железобетонных опор на оттяжках наибольшее распространение получили железобетонные сборные фундаменты, устанавливаемые в котлованы. При изготовлении на заводе фундаменты поступают на линию или в виде готовых к установке конструкций (подножников, свай, плит, ригелей, ростверков), или в виде отдельных деталей (рис. 1.1).
Широкое применение железобетонных подножников заводского изготовления возможно в грунтах почти всех категорий, что резко снижает трудоемкость устройства фундаментов, а также объемы земляных работ, расход бетона и в конечном счете стоимость сооружения. Применение железобетонных подножников заводского изготовления позволяет выполнять сооружение фундаментов под опоры ВЛ практически в любое время года.
С целью ограничения числа типов железобетонных подножников и свай, предназначенных для массового изготовления на заводе, они унифицированы. Шифровка фундаментов основной номенклатуры определяется буквой Ф – фундамент и цифрой, которая указывает типоразмер фундамента. Специальные фундаменты имеют после первой буквы в шифре дополнительную букву С, укороченные – К, повышенные – П. После цифры, обозначающей типоразмер фундамента, через дефис проставляется буква или цифра, указывающая на его применение:
А – под анкерно‑угловые опоры; О – под стойки опор с оттяжками; 2 – под опоры с башмаками, имеющими два отверстия; 4 – под опоры с опорными башмаками, имеющими четыре отверстия. В случае установки на фундаментах неосновных вариантов наголовников (с болтами диаметром 48 мм или болтами длиной 350 мм) после буквы А основного шифра через дефис проставляются цифры соответственно 48 или 350.
Ф4‑А – фундамент 4‑го типоразмера под анкерно‑угловую опору;
ФС 2–4 – фундамент специальный 2‑го типоразмера под опору с башмаками, имеющими четыре отверстия, т. е. фундамент с четырьмя болтами;
ФК 1–О – фундамент укороченный 1‑го типоразмера под стойку опоры на оттяжках.
Для шифровки фундаментов дополнительной номенклатуры к шифру основного фундамента добавляют букву:
в шифре вариантов фундаментов с модернизированным оголовком после буквы А добавляется буква М – модернизированный, например Ф3‑АМ, Ф5‑АМ;
в шифре вариантов фундаментов со сварным или болтовым соединением стойки с нижней частью после букв ФП и ФС добавляется буква С, обозначающая сварной, или буква Б – болтовой вариант.
Например, ФПС5‑А – вариант повышенного фундамента ФП5‑А со сварным соединением стойки и нижней части; ФСБ2‑4 – вариант специального фундамента ФС‑4 с болтовым соединением стойки и нижней части.
Для изготовления железобетонных фундаментов применяется бетон марок 200, 300 и 400 (по прочности на сжатие), приготовленный на портландцементе. При наличии на трассе агрессивных к бетону грунтовых вод для приготовления бетона применяется цемент, стойкий к конкретному виду агрессии.
Для армирования железобетонных фундаментов применяется арматура из горячекатаной углеродистой или низколегированной стали. Для линий электропередачи, строящихся в районах с расчетной наружной температурой воздуха до –30 °C, разрешается применять арматуру из кипящих сталей; для линий, строящихся в районах с расчетной температурой воздуха от –30 до –40 °C, разрешается применение арматуры из полуспокойной стали, а для районов с температурой ниже –40 °C – только из стали спокойной плавки.
Для промежуточных и анкерно‑угловых стальных опор основным конструктивным элементом фундаментов принят подножник грибовидной формы, а для анкерно‑угловых опор и опор с оттяжками применяются подножники с наклонными стойками, ось которых является продолжением пояса опоры и оси оттяжки. Это резко снижает горизонтальные нагрузки на фундамент. Для крепления оттяжек вантовых опор применяются также составные фундаменты с навесными плитами прямоугольного сечения. Эти фундаменты получаются сочетанием грибообразного подножника и навесных плит.
Выбор типов фундаментов производится на основании установочных чертежей, разработанных для каждого типа опоры. На установочных чертежах приводятся: план расположения фундаментов; привязка ригелей, пригрузочных плит; район по гололеду и скоростной напор ветра, а для анкерно‑угловых опор – угол поворота на линии. На чертежах фундаментов указывается степень уплотнения грунта засыпки.
Под анкерно‑угловые опоры разработано семь типов фундаментов: Ф1‑А; Ф2‑А; Ф3‑А; Ф4‑А; Ф5‑А; Ф6‑А и ФС. Под промежуточные и промежуточно‑угловые опоры разработаны шесть типов фундаментов: Ф1; Ф2; Ф3; Ф4; Ф5; Ф6 и фундамент типа ФС.
При прохождении трассы ВЛ в районах рек, болот, по косогорам применяются повышенные составные подножники типа ФП со сварным – С или болтовым – Б соединениями стойки с нижней частью. Основные типы, характеристики сборных железобетонных фундаментов и подножников для ВЛ 35–500 кВ приведены в табл. 1-4.
Фундаменты под промежуточные опоры ВЛ 35–500 кВ
Источник