5.5.3. Определение основных размеров фундаментов (ч. 3)
Б. ВНЕЦЕНТРЕННО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ
Размеры внецентренно нагруженных фундаментов определяются исходя из условий:
где р — среднее давление под подошвой фундамента от нагрузок для расчета оснований по деформациям; pmax — максимальное краевое давление под подошвой фундамента; р c max — то же, в угловой точке при действии моментов сил в двух направлениях; R — расчетное сопротивление грунта основания.
Максимальное и минимальное давления под краем фундамента мелкого заложения при действии момента сил относительно одной из главных осей инерции площади подошвы определяется по формуле
где N — суммарная вертикальная нагрузка на основание, включая вес фундамента и грунта на его обрезах, кН; A — площадь подошвы фундамента, м 2 ; Мх — момент сил относительно центра подошвы фундамента, кН·м; y — расстояние от главной оси инерции, перпендикулярной плоскости действия момента сил, до наиболее удаленных точек подошвы фундамента, м; Ix — момент инерции площади подошвы фундамента относительно той же оси, м 4 .
Для прямоугольных фундаментов формула (5.53) приводится к виду
где Wx — момент сопротивления подошвы, м 3 ; ex = Mx/N — эксцентриситет равнодействующей вертикальной нагрузки относительно центра подошвы фундамента, м; l — размер подошвы фундамента в направлении действия момента, м.
При действии моментов сил относительно обеих главных осей инерции давления в угловых точках подошвы фундамента определяется по формуле
или для прямоугольной подошвы
где Мх, My, Iх, Iy, ex, ey, x, у — моменты сил, моменты инерции подошвы эксцентриситеты и координаты рассматриваемой точки относительно соответствующих осей; l и b — размеры подошвы фундамента.
Условия (5.50)—(5.52) обычно проверяются для двух сочетаний нагрузок, соответствующих максимальным значениям нормальной силы или момента.
Относительный эксцентриситет вертикальной нагрузки на фундамент ε = е/l рекомендуется ограничивать следующими значениями:
εu = 1/10 — для фундаментов под колонны производственных зданий с мостовыми кранами грузоподъемностью 75 т и выше и открытых крановых эстакад с кранами грузоподъемностью более 15 т, для высоких сооружений (трубы, здания башенного типа и т.п.), а также во всех случаях, когда расчетное сопротивление грунтов основания R εu = 1/6 — для остальных производственных зданий с мостовыми кранами и открытых крановых эстакад;
εu = 1/4 — для бескрановых зданий, а также производственных зданий с подвесным крановым оборудованием.
Форма эпюры контактных давлений под подошвой фундамента зависит от относительного эксцентриситета (рис. 5.25): при ε ε = 1/10, соотношение краевых давлений pmin/pmax = 0,25), при ε = 1/6 — треугольная с нулевой ординатой у менее загруженной грани подошвы, при ε > 1/6 — треугольная с нулевой ординатой в пределах подошвы, т.е. при этом происходит частичный отрыв подошвы.
В последнем случае максимальное краевое давление определяется по формуле
где b — ширина подошвы фундамента; l0 = l /2 – e — длина зоны отрыва подошвы (при ε = 1/4, l0 = 1,4).
Следует отметить, что при отрыве подошвы крен фундамента нелинейно зависит от момента.
Распределение давлений по подошве фундаментов, имеющих относительное заглубление λ = d/l > 1, рекомендуется находить с учетом бокового отпора грунта, расположенного выше подошвы фундамента. При этом допускается применять расчетную схему основания, характеризуемую коэффициентом постели (коэффициентом жесткости). В этом случае краевые давления под подошвой вычисляются по формуле
где id — крен заглубленного фундамента; ci — коэффициент неравномерного сжатия.
Пример 5.11. Определить размеры фундамента для здания гибкой конструктивной схемы без подвала, если вертикальная нагрузка на верхний обрез фундамента N = 10 МН, момент M = 8 МН·м, глубина заложения d = 2 м. Грунт — песок средней крупности со следующими характеристиками, полученными по испытаниям: е = 0,52; φII = 37°; cII = 4 кПа; γ = 19,2 кН/м 3 . Предельное значение относительного эксцентриситета εu = е/l = 1/6.
Решение. По табл. 5.13 R0 = 500 кПа. Предварительные размеры подошвы фундамента определим исходя из требуемой площади:
м 2 .
Принимаем b · l = 4,2 · 5,4 м ( A = 22,68 м 2 ).
Расчетное сопротивление грунта по формуле (5.29) R = 752 кПа. Максимальное давление под подошвой
кПа R = 900 кПа.
Эксцентриситет вертикальной нагрузки
м,
Таким образом, принятые размеры фундамента удовлетворяют условиям, ограничивающим краевое давление и относительный эксцентриситет нагрузки.
Сорочан Е.А. Основания, фундаменты и подземные сооружения
Источник
5. Определение напряжений, действующих по подошве фундамента, и сравнение их с расчетным сопротивлением грунта.
Рассчитываем напряжения, действующие по подошве фундамента. Расчеты представляем в табличной форме (табл. 1).
В табл. 1 γf = 1,1 – коэффициент надежности по нагрузке к весу стены;
γf = 1,2 – то же, к активному давлению грунта.
Нормативная сила, кН
Расчетная сила, кН
Gст =
Gф = (3 . 5,5 — . 24 = 403,55
Моменты вычисляем относительно осей, проходящих через центр тяжести подошвы фундамента (точка О на рис. 3). Равнодействующие активного и пассивного Еn давлений прикладываем к стене на уровне центра тяжести эпюр интенсивности давления. Вес стены и фундамента – в центре тяжести соответствующего элемента.
Плечи сил взяты в масштабе по чертежу.
Сумма расчетных вертикальных сил N1 = 523,49 + 443,91 – 27,54 = 939,86 кН.
Сумма моментов расчетных сил М1 = – 677,40 – 23,8 + 1876,89 + 82,62 – 74,04 = 1184,27 кНм.
Площадь и момент сопротивления подошвы фундамента стены по формулам :
А = b . 1 = 5,5 . 1 = 5,5 м 2 ;
W = = 5,04 м 3 .
рср = =
= 170,88 кПа;
=
;
Эпюры напряжений по подошве стены представлены на рис. 3.
Сопоставим найденные напряжения с расчетным сопротивлением:
Источник
Проверка напряжений по подошве фундамента
Размеры подошвы фундамента должны быть подобраны таким образом, чтобы давления по подошве фундамента от внешней нагрузки не превышало допустимых значений, а именно:
;
;
. (17)
Для фундамента, необходимо всю нагрузку собрать на подошву фундамента, чтобы произвести проверку напряжений по подошве:
— вес грунта обратной засыпки (Nгр) – обратная засыпка выполняется песком с удельным весом γII = 18 кН/м 3 и углом внутреннего трения φII = 30;
— вес бетонного пола — – удельный вес бетона принимается равным 22 кН/м 3 ;
— усилия от горизонтального давления грунта обратной засыпки на стену подвала, при этом необходимо учитывать временную нагрузку на поверхность грунта интенсивностью q = 10 кПа.
Среднее давление по подошве фундамента Рср, определяется по формуле:
, где (18)
Рmax, Рmin определяется по формуле:
, (19)
здесь — эксцентриситет приложения нагрузки;
А – площадь подошвы запроектированного фундамента, м 2 .
Если условия (17) не выполняются, меняют размеры подошвы фундамента. При незначительной разнице Р и R (примерно 5% — в пределах точности инженерных расчетов), выбранные размеры фундамента оставляют неизменными.
В противном случае необходимо увеличить или уменьшить размеры подошвы фундамента и заново определить Nф, Nгр, Р и R с последующей проверкой условий (17).
6.5. Проверка слабого подстилающего слоя.
Если верхние слои грунта, на которые опирается фундамент, подстилается менее прочными, то необходимо выполнять проверку слабого подстилающего слоя.
Проверка слабого грунта согласно СНиП 2.02.01-83*, заключается в обеспечении условия:
, (20)
где — вертикальные напряжения в грунте на глубине z от подошвы фундамента до слабого подстилающего слоя соответственно дополнительное от нагрузки на фундамент и от собственного веса грунта, кПа; Rz – расчетное сопротивление слабого грунта расположенного на глубине z от подошвы фундамента, кПа.
Расчет осадки фундамента
Для основания сложенного нескальными грунтами расчет по деформациям является необходимым. Расчет сводится к определению абсолютной осадки отдельного фундамента. Полученные величины в результате расчета сравнивают с предельно допустимыми, приведенными в СНиП 2.02.01-83*:
(21)
где S — деформация фундамента по расчету;
Su — предельное значение деформации, определяемое по прилож. 4 СНиП 2.02.01-83*.
Осадку фундамента можно рассчитывать любым методом, но обязательным является применение метода послойного суммирования. Расчет осадки фундамента методом послойного суммирования с использованием расчетной схемы в виде линейно деформируемого полупространства определятся в следующей последовательности:
1. Выполняется схема запроектированного фундамента, совмещенная с геологическим разрезом (рис. 12).
2. Сжимаемая толща грунтов, расположенная ниже подошвы фундамента, разбивается на элементарные слои толщиной hi ≤ 0,4b на глубину примерно 3b, где b – ширина подошвы фундамента. При этом границы элементарных слоев должны совпадать с границами слоев грунта.
3. Строится эпюра природного давления σzq, возникающих в основании от веса выше лежащих слоев грунта. При высоком положении УГВ удельный вес грунта берется с учетом взвешивающего действия воды. В случае если имеем водонепроницаемый грунт (глина, суглинок с IL ≤ 0), тогда на поверхность этого слоя передается дополнительное давление водяного столба (γwhw). Значения вертикальных напряжений от собственного веса грунта на уровне подошвы фундамента и на границе каждого элементарного слоя определяются по формуле:
, (22)
где γi – удельный вес i-го слоя грунта, с учетом взвешивающего действия воды, кН/м 3 ;
hi – толщина i-го слоя грунта, м.
4. Строится эпюра дополнительного (уплотняющего) вертикального давления σzp под подошвой фундамента. Начальная ордината эпюры в уровне подошвы фундамента σzq0 определяется по формуле:
; (23)
где σzq0 – вертикальное напряжение от собственного веса грунта на уровне подошвы фундамента, кПа; σzq0 — вертикальное напряжение от собственного веса грунта на уровне подошвы фундамента, кПа;
P – среднее давление на грунт по подошве фундамента от нормативных нагрузок, кПа.
Значения дополнительных вертикальных напряжений в грунте вычисляются по формуле:
, (24)
где αi – коэффициент рассеивания напряжений, принимаемый по таблице 9 в зависимости от формы подошвы фундамента, соотношения сторон прямоугольного фундамента n = l/b и относительной глубины, равной m = 2z/b.
Величины дополнительных вертикальных напряжений определяются на границах элементарных слоев.
5. Определяется глубина активной зоны (сжимаемой толщи).
Нижняя граница сжимаемой толщи (НГСТ) находится на глубине, где выполняется следующее условие при Е ≥ 5,0 МПа:
(25)
Если найденная граница сжимаемой толщи находится в слое грунта с модулем деформации Е 3
Т а б л и ц а 9 Значения коэффициентов рассеивания напряжений
| Коэффициенты | |||||||
круглых | Прямоугольных с соотношением сторон | Ленточных при | ||||||
1,4 | 1,8 | 2,4 | 3,2 | |||||
0,0 0,4 0,8 1,2 1,6 2,0 2,4 2,8 3,2 3,6 4,0 4,4 4,8 5,2 5,6 6,0 6,4 6,8 7,2 7,6 8,0 8,4 8,8 9,2 9,6 10,0 10,4 10,8 11,2 11,6 12,0 | 1,000 0,949 0,756 0,547 0,390 0,284 0,213 0,165 0,130 0,106 0,087 0,073 0,062 0,053 0,046 0,040 0,036 0,032 0,028 0,025 0,023 0,021 0,019 0,017 0,016 0,015 0,014 0,013 0,012 0,011 0,010 | 1,000 0,960 0,800 0,606 0,449 0,336 0,257 0,201 0,160 0,131 0,108 0,091 0,077 0,067 0,058 0,051 0,045 0,040 0,036 0,032 0,029 0,026 0,024 0,022 0,020 0,019 0,017 0,016 0,015 0,014 0,013 | 1,000 0,972 0,848 0,682 0,532 0,414 0,325 0,260 0,210 0,173 0,145 0,123 0,105 0,091 0,079 0,070 0,062 0,055 0,049 0,044 0,040 0,037 0,033 0,031 0,028 0,026 0,024 0,022 0,021 0,020 0,018 | 1,000 0,975 0,866 0,717 0,578 0,463 0,374 0,304 0,251 0,209 0,176 0,150 0,130 0,113 0,099 0,087 0,077 0,069 0,062 0,056 0,051 0,046 0,042 0,039 0,036 0,033 0,031 0,029 0,027 0,025 0,023 | 1,000 0,976 0,875 0,739 0,612 0,505 0,419 0,349 0,294 0,250 0,214 0,185 0,161 0,141 0,124 0,110 0,099 0,088 0,080 0,072 0,066 0,060 0,055 0,051 0,047 0,043 0,040 0,037 0,035 0,033 0,031 | 1,000 0,977 0,879 0,749 0,629 0,530 0,449 0,383 0,329 0,285 0,248 0,218 0,192 0,170 0,152 0,136 0,122 0,110 0,100 0,091 0,084 0,077 0,071 0,065 0,060 0,056 0,052 0,049 0,045 0,042 0,040 | 1,000 0,977 0,881 0,754 0,639 0,545 0,470 0,410 0,360 0,319 0,285 0,255 0,230 0,208 0,189 0,172 0,158 0,145 0,133 0,123 0,113 0,105 0,098 0,091 0,085 0,079 0,074 0,069 0,065 0,061 0,058 | 1,000 0,977 0,881 0,755 0,642 0,550 0,477 0,420 0,374 0,337 0,306 0,280 0,258 0,239 0,223 0,208 0,196 0,185 0,175 0,166 0,158 0,150 0,143 0,137 0,132 0,126 0,122 0,117 0,113 0,109 0,106 |
Рис. 12. Расчетная схема для определения осадки фундамента
Рис. 13. Эпюры природных давлений δzq
а) при наличии грунтовой воды и третьего водоупорного слоя;
б) при наличии грунтовой воды и первого водоупорного слоя.
Источник