6.2.3. Расчет стен подвалов
Наружные стены подвалов рассчитываются на нагрузки, передаваемые наземными конструкциями, и на давление грунта, определяемое по рекомендациям гл. 7.
Полезная нагрузка на прилегающей к подвалу территории по возможности заменяется эквивалентной равномерно распределенной. При отсутствии данных об интенсивности полезной нагрузки она может быть принята равной 10 кПа.
Усилия в стенах подвала, опертых на перекрытие, определяются как для балочных плит с защемлением на уровне сопряжения с фундаментом, так и с шарнирной опорой в уровне опирания на перекрытие с учетом возможного перераспределения усилий от поворота (крена) фундамента или смещения стен при загружении территории, прилегающей к подвалу.
Изгибающие моменты и поперечные силы в стенах подвалов определяются по формулам:
при перекрытии подвала, расположенном ниже уровня планировки (рис. 6.17)
расстояние от верхней опоры до максимального пролетного момента
при перекрытии подвала, расположенном выше уровня планировки,
где σsup и σinf — горизонтальные давления на верхнюю и нижнюю части стены подвала от собтвенного веса грунта и от равномерно распределенной нагрузки на поверхности грунта:
(здесь σ sup ah , σ inf ah , σqh и σch — определяются по указаниям гл. 7; индексы « sup » и « inf » относятся соответственно к верхней и нижней частям стены); Мinf — изгибающий момент на уровне нижней опоры; Мх — изгибающий момент в сечении стены, расположенном на расстоянии X от верхней опоры; Qsup — поперечная сила на уровне верхней опоры; Qinf — поперечная сила на уровне нижней опоры (на уровне сопряжения стены с фундаментом); l — размер сечения стены (в продольном направлении); H — расстояние от низа перекрытия до верха фундамента; H1 — толщина слоя грунта, вводимая в расчет при определении бокового давления грунта (см. рис. 6.17); m1 — коэффициент, учитывающий поворот фундамента; m2 — коэффициент, учитывающий податливость верхней опоры; k1 и k2 — коэффициенты, учитывающие изменение жесткости стеновых панелей (для стен с переменной толщиной по высоте), принимаются по табл. 6.3 в зависимости от отношения толщины стеновой панели в верхней части σsup к толщине ее в нижней части σinf на уровне сопряжения с фундаментом; n = H1/H .
ТАБЛИЦА 6.3. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА ЖЕСТКОСТИ
δsup/δinf | k1 | k2 |
1 | 0,0583 | 0,0667 |
0,7 | 0,0683 | 0,0747 |
0,6 | 0,0753 | 0,0787 |
0,5 | 0,0813 | 0,0837 |
0,4 | 0,0883 | 0,0907 |
0,3 | 0,0993 | 0,0977 |
Коэффициент m1 , учитывающий поворот ленточного фундамента, принимается при наличии конструкций, препятствующих повороту фундамента (перекрестных лент или сплошной фундаментной плиты), равным 0,8; в остальных случаях m1 определяется по формуле
где Еmw —модуль упругости материала стены; Е — модуль деформации грунта основания; b — ширина подошвы фундамента; δinf — толщина стены в сечении по обрезу фундамента; hf — высота фундамента.
Если значение m1 по формуле (6.76) окажется более 0,8, то принимается m1 = 0,8.
Коэффициент m2 в случае, когда перекрытие подвала расположено ниже уровня планировки, принимается:
– при невозможности горизонтального смещения верхней опоры стены (опирание перекрытия на массивные фундаменты, поперечные стены и т.п.)
– при возможности упругого смещения верхней опоры стены
Если перекрытие подвала расположено выше уровня планировки,
Пример 6.3. Требуется определить усилия в массивной стене подвала. Исходные данные: стена подвала — из бетонных блоков шириной 50 см; класс бетона В15; высота подвала H0 = 3,3 м (рис. 6.18); ширина подошвы фундаментной плиты 1,4 м, высота 0,35 м; глубина заложения подошвы фундамента от пола подвала 0,5 м; расчетная высота стены H = 3,45 м; нормативная нагрузка от лежащих выше конструкций здания на 1 м стены подвала 200 кН; временная нормативная равномерно распределенная нагрузка на поверхности грунта qн = 10 кПа; грунт засыпки — суглинок с характеристиками: γ´I = 19,5 кН/м 3 ; γ´II = 19,5 кН/м 3 ; φ´I = 22°; φ´II = 24°; с´I = 5 кПа; c´II = 7,5 кПа; E = 14 000 кПа. Расчет производится на 1 м длины стены подвала. Принятая ширина подошвы фундаментной плиты проверена расчетом основания но первой и второй группам предельных состояний.
Решение. Определяем момент Minf и поперечную силу Qinf на уровне верха фундаментной плиты. Находим:
кПа,
кПа,
где γf — коэффициент надежности по нагрузке, равный 1,2;
кПа.
Вычисляем σsup и σinf по формулам (6.74) и (6.75):
σsup = 0 + 5,5 – 6,75 = –1,25 кПа;
σinf = 25,5 + 5,5 – 6,75 = 24,35 кПа;
м.
Находим коэффициенты m1 и m2 по формулам (6.76) и (6.78), принимая Emw = 8,4 · 104 кПа:
;
Коэффициент n = H´/H = 2,47/3,45 = 0,71.
Определяем расчетные усилия в стене по формулам (6.69)–(6.72):
кН·м;
кН;
кН;
кН·м;
м.
В этом случае взамен фактического значения H1 принимаем расчетное значение H´ .
Сорочан Е.А. Основания, фундаменты и подземные сооружения
Источник
6.2. РАСЧЕТ ЛЕНТОЧНЫХ ФУНДАМЕНТОВ И СТЕН ПОДВАЛОВ
6.2.1. Общие положения
Ленточные фундаменты под стены выполняются в монолитном или сборном варианте (см. гл. 4). При наличии подвала фундаментная стена является одновременно стеной подвала, которая работает совместно с элементами сооружения.
По конструктивному решению стены подвалов зданий и сооружений подразделяются на массивные (рис. 6.14, а) и гибкие (рис. 6.14, б, в). Массивные стены применяются в подвалах зданий и сооружений и выполняются из кирпича, крупных бетонных блоков, панелей и т.д.
Гибкие стены выполняются, как правило, в виде железобетонных навесных панелей, работающих на изгиб в вертикальной плоскости. Стены подвалов опираются на перекрытия, располагаемые выше или ниже поверхности грунта.
Стены подвала, опертые на колонны, рассчитываются по схеме разрезной балки с расчетным пролетом, равным расстоянию между осями колонн, на равномерно распределенную нагрузку от давления грунта, равного среднему давлению в пределах условно принятой расчетной ширины панели.
Наружные стены подвалов, опертые на перекрытия, рассчитываются: по первой группе предельных состояний — на устойчивость положения стен подвалов против сдвига на подошве фундамента (при отсутствии специальных конструктивных мероприятий, удерживающих стену от сдвига); на устойчивость основания фундамента стены (для нескальных грунтов); на прочность скального основания (для скальных грунтов); на прочность элементов конструкций и узлов соединений; по второй группе предельных состояний — на деформации оснований фундаментов стен, на образование трещин в элементах конструкций.
Все эти расчеты, за исключением расчетов на устойчивость основания, в которых следует использовать метод круглоцилиндрических поверхностей скольжения, выполняются так же, как и для свободно стоящих подпорных стен (см. далее гл. 7). Расчеты на устойчивость с использованием метода круглоцилиндрических поверхностей скольжения производятся при фиксированном центре этих поверхностей. За центр поверхности скольжения в этих случаях принимается нижняя точка опирания стены на перекрытие.
6.2.2. Расчет ленточных фундаментов
Ленточные фундаменты наружных стен зданий с подвалами рассчитываются на нагрузки, передаваемые стеной подвала, и на действующее на них давление грунта.
Расчет ленточных фундаментов производится по сечению I-I, проходящему по краю фундаментной стены (рис. 6.15), а при ступенчатой форме фундаментов — и по грани ступени. Расчетные усилия в сечении на 1 м длины фундамента при центральной нагрузке определяются по формулам:
где р — среднее давление по подошве фундамента, передаваемой на грунт от расчетных нагрузок; а — выступ консоли фундамента.
Расчетные усилия в сечении на 1 м длины фундамента при внецентренной нагрузке (см. рис. 6.15) вычисляются по формулам:
где рmax и p1 — соответственно давления от расчетных нагрузок, передаваемые на грунт под краем фундамента в расчетном сечении.
Расчет по прочности нормальных сечений производится на момент от расчетных нагрузок. Подбор площади
сечения продольной арматуры производится по формуле
где Rs — расчетное сопротивление арматуры растяжению; v — коэффициент, определяемый по табл. 6.2 в зависимости от параметра А´0 ; h0 — рабочая высота сечения, принимаемая равной расстоянию от верха фундамента до центра арматуры.
ТАБЛИЦА 6.2. ЗНАЧЕНИЯ КОЭФФИЦИЕНТА v
A´0 | v | A´0 | v |
0,039 | 0,98 | 0,139 | 0,92 |
0,058 | 0,97 | 0,164 | 0,91 |
0,077 | 0,96 | 0,18 | 0,90 |
0,095 | 0,95 | 0,204 | 0,88 |
0,113 | 0,94 |
Параметр А´0 определяется по формуле
где Rb — расчетное сопротивление бетона для предельного состояния первой группы; b — ширина сечения фундамента.
При расчете наклонных сечений на действие поперечной силы должно соблюдаться условие
Расчет на действие поперечной силы не производится при
где k1 — коэффициент, принимаемый для тяжелого бетона равным 0,75; Rbt —расчетное сопротивление бетона осевому растяжению для предельного состояния первой группы.
Расчет элементов без поперечной арматуры производится из условия
где Q — поперечная сила, действующая в наклонном сечении, т.е. равнодействующая всех поперечных сил от внешней нагрузки, расположенных по одну сторону от рассматриваемого наклонного сечения; Qb — поперечное усилие, воспринимаемое бетоном сжатой зоны в наклонном сечении:
где k2 — коэффициент, принимаемый для тяжелого бетона равным 1,5; с — длина проекции наклонного сечения на продольную ось.
Железобетонные фундаменты рассчитываются по раскрытию трещин, при этом ширина раскрытия трещин, нормальных к продольной оси элемента, определяется по формуле
где η — коэффициент, принимаемый равным при стержневой арматуре периодического профиля 1,8, гладкой 1,3, при проволочной арматуре периодического профиля 1,2, гладкой 1,4; σs —напряжение в стержнях растянутой арматуры; μ — коэффициент армирования сечения, принимаемый равным отношению площади сечения арматуры к площади сечения b × h0 , но не более 0,02; d — средний диаметр растянутой арматуры:
где d1 , …, dk — диаметры стержней растянутой арматуры; n1 , …, nk — число стержней соответствующе арматуры.
Напряжение в арматуре определяется по формуле
где M1 — момент от действия расчетной нагрузки при коэффициенте надежности по нагрузке γf = 1:
М — момент от действия расчетной нагрузки при коэффициенте надежности по нагрузке γf > 1; А´s — фактическая площадь принятой арматуры; А´´s — площадь арматуры, требуемая по расчету прочности.
Пример 6.2. Рассчитать фундаментную плиту с угловыми вырезами (рис. 6.16). На 1 м длины фундамента передается нагрузка 450 кН. Бетон класса В10, имеющий Rbt = 0,63 МПа и Rb = 7 МПа.
Решение. Среднее давление по подошве фундамента
р = 450 · 240/(0,4 · 1,6 + 0,6 · 2,4) = 0,52 МПа,
а с учетом коэффициента надежности по нагрузке
р´ = 1,2 · 0,52 = 0,62 МПа.
Нагрузка на 1 м ширины фундаментной плиты составит:
Расчет проводим в трех сечениях: I–I — по грани стеновой панели; II–II — по грани угловых вырезов с учетом анкеровки арматуры на величину lа , равную примерно 9 см; III–III — то же, без учета анкеровки. Расчетные усилия в этих сечениях будут:
MI–I = 995 · 0,42 2 /2 + (1490 – 995) 0,285 2 /2 = 101,3 кН·м
QI–I = 995 · 0,185 + 1490 · 0,235 = 534 кН;
MII–II = 995 · 0,275 2 /2 + (1490 – 995) 0,09 2 /2 = 39,6 кН·м;
Определяем необходимую площадь сечения арматуры при h0 = 0,3 – 0,033 = 0,267 м:
;
по табл. 6.2 находим v = 0,955; площадь сечения арматуры
см 2 ;
;
при v = 0,983 площадь сечения арматуры
см 2 ;
Армируем двумя сетками — нижней, рабочая арматура которой принята диаметром 8 мм из стали класса А-III в количестве 16 стержней общей площадью 8,04 см 2 , и верхней из арматуры диаметром 5 мм класса Вр-I в количестве 24 стержней общей площадью 4,73 см 2 . Общая площадь арматуры в сечении I–I составляет 12,77 см 2 .
Рассматриваем наклонные сечения 3 и 4. Определяем по формуле (6.56):
Q = 0,35 Rbbh0 = 0,35 · 0,7 · 26,7 = 1516 кН > 534 кН.
Находим по формуле (6.57):
Q1 = k1Rbtbh0 = 0,75 · 0,063 · 240 · 26,7 = 292,4 с = 26 см. Тогда а´ = а – с = 42 – 26 = 16 см. Высота сечения для а´ :
h´ = 10 + 16 (30 – 10)/20 = 26 см;
Определяем усилие, воспринимаемое бетоном, и действующее усилие:
Q = QI–I – qc = 534 – 1496 · 0,235 – 995 (0,26 – 0,235) = 159 кН с = 37 см. Тогда а´ = 42 – 37 = 5 см и h0 = 18,6 см, откуда:
Qb = 1,5 · 0,053 · 160 · 18,5/37 = 140 кН;
Q = 534 – 1490 · 0,235 – 995 (0,37 – 0,235) = 50 кН M´1 = M/ γf = 101,3/1,2 = 84,4 кН·м;
d = (24 · 0,52 + 16 · 0,8) = 6,6 мм;
ас = 1,2 · 120 (3,5 – 100 · 0,002)
= 0,191 мм
Сорочан Е.А. Основания, фундаменты и подземные сооружения
Источник