Расчет фундаментов мелкого заложения последовательность расчета фмз

Конспект лекций по основаниям и фундаментам оглавление

1.3. Расчет фундаментов мелкого заложения

Расчет ФМЗ начинают с предварительного выбора его конструкции и основных размеров (это глубина заложения фундамента и размер его подошвы).

Далее производят расчет по двум предельным состояниям:

I – Расчет по прочности (устойчивость)

II – Расчет по деформациям, которые являются основным и обязательным для всех ФМЗ.

А расчет по I группе предельных состояний является дополнительным и производится в одном из следующих случаев:

  • Сооружение расположено на откосе (склоне) или вблизи него;
  • На основание передаются значительные по величине горизонтальные нагрузки;
  • В основании залегают очень слабые грунты (или текучие и текучепластичные глинистые грунты и т.п.), обладающие малому сопротивлению сдвигу;
  • В основании залегают наоборот, очень прочные – скальные грунты.

Установив окончательные размеры фундамента, удовлетворяющие двум группам предельного состояния, переходят к его конструированию (курс ЖБК).

1.3.а. Определение глубины заложения фундамента

Очевидно, что чем меньше глубина заложения фундамента, тем меньше объем затрачиваемого материала и ниже стоимость его возведения. Однако при выборе глубины заложения фундамента приходится руководствоваться целым рядом факторов:

  • Геологическое строение участка и его гидрогеология (наличие воды);
  • Глубина сезонного промерзания грунта;
  • Конструктивные особенности здания, включая наличие подвала, глубину прокладки подземных коммуникаций, наличие и глубину заложения соседних фундаментов.

^ 1. Учет ИГУ строительной площадки заключается в выборе несущего слоя грунта. Этот выбор производится на основе предварительной оценки прочности и сжимаемости грунтов. По геологическим разрезам. Все многообразие напластования грунта можно представить в виде трех схем:

Читайте также:  Уголок вместо арматуры фундамент

Рис 10.10. Схемы напластований грунтов с вариантами устройства фундаментов:

1 – нормальный грунт; 2 – более прочный грунт; 3 – слабый грунт; 4 – песчаная подушка; 5 – зона закрепления грунта.

При выборе типа и глубины заложения фундамента придерживаются следующих общих правил:

  • Минимальная глубина заложения фундамента принимается не менее 0,5 мот планировочной отметки;
  • Глубина заложения фундамента в несущий слой грунта должна быть не менее 10-15 см;
  • По возможности закладывать фундаменты выше УГВ для исключения необходимости применения водопонижения при производстве работ;
  • В слоистых основаниях все фундаменты предпочтительно возводить на одном грунте или на грунтах с близкой прочностью и сжимаемостью. Если это условие невыполнимо, то размеры фундаментов выбираются главным образом из условия выравнивания осадок.

^ 2. Глубина сезонного промерзания грунта.

Проблема заключается в том, что многие водонасыщенные глинистые грунты обладают пучинистыми свойствами, т.е. увеличивают свой объем при замерзании, за счет образования в них прослоек льда. Замерзание сопровождается подсосом грунтовой воды из ниже лежащих слоев .за счет чего толщина прослоек льда еще более увеличивается. Это приводит к возникновению сил пучения по подошве фундамента. Которые могут вызвать подъем сооружения. Последующее оттаивание таких грунтов приводит к резкому их увлажнению, снижению их несущей способности и просадкам сооружения.

Наибольшему пучению подвержены грунты, содержащие пылеватые и глинистые частицы. К непучинистым грунтам относят: крупнообломочный грунт с песчаным заполнителем, пески гравелистые, крупные и средней крупности, глубина заложения фундаментов в них не зависит от глубины промерзания (в любых условиях).

^ Рис. Схема морозного пучения основания

df – глубина сезонного промерзания грунтов.

Для малых зданий (дачные постройки) настоящий бич – боковые силы пучения грунта:

Kh – коэффициент, учитывающий тепловой режим подвала здания.

dfn – нормативная глубина сезонного промерзания грунта

Mt – коэффициент, численно равный ∑ абсолютных значений (-) температур за зиму в данном районе.

do– коэффициент, учитывающий тип грунта под подошвой фундамента.

^ 3. Конструктивные особенности сооружения.

Основными конструктивными особенностями возводимого сооружения, влияющими на глубину заложения его фундамента, являются:

  • Наличие и размеры подвальных помещений, приямков или фундаментов под оборудование;
  • Глубина заложения фундаментов примыкающих сооружений;
  • Наличие и глубина прокладки подземных коммуникаций и конструкций самого фундамента.

Глубина заложения фундамента принимается на 0,2-0,5 м ниже отметки пола подвала (или заглубленного помещения), т.е. на высоту фундаментного блока.

Фундаменты сооружения или его отсека стремятся закладывать на одном уровне.

Рис. 10.11. Выбор глубины заложения фундамента в зависимости от конструктивных особенностей сооружения:

а – здание с подвалом в разных уровнях и приямком; б – изменение глубины заложения ленточного фундамента; 1 – фундаментные плиты; 2 – приямок; 3 – трубопровод; 4 – стена здания; 5 – подвал; 6 – ввод трубопровода; 7 – стеновые блоки.

В других случаях, разность отметок заложения расположенных рядом фундаментов (Δh) не должна превышать:

a – расстояние в свету между фундаментами;

p – среднее давление под подошвой расположенного выше фундамента.

Фундаменты проектируемого сооружения, непосредственно примыкающие к фундаментам существующего, рекомендуется закладывать на одном уровне, либо проведение специальных мероприятий (шпунтовые стены).

Ввод коммуникаций (трубы водопровода, канализации) должен быть заложен выше подошвы фундамента.

^ Рис. Схема неправильного и правильного ввода коммуникаций

При этом условии трубы не подвержены дополнительному давлению от фундамента, а фундаменты не опираются на насыпной грунт траншей, вырытых для прокладки труб. Кроме того, при необходимости замены труб не будут нарушены грунты основания.

1.3.б Форма и размер подошвы фундамента

Форма бывает любая (круглая, кольцевая, многоугольная, квадратная, прямоугольная, ленточная, табровая, крестообразная и более сложная форма), но, как правило, она повторяет форму опирающейся на нее конструкцию.

Площадь подошвы предварительно может быть определена из условия:

PII – среднее давление под подошвой фундамента от основного сочетания расчетных нагрузок при расчете по деформациям;

R – расчетное сопротивление грунта основания, определяемое по формуле СНиП.

Рис. 10.12. Расчетная схема центрально нагруженного фундамента.

Реактивная эпюра отпора грунта при расчете жестких фундаментов принимается прямоугольной. Тогда из уравнения равновесия:

Сложность в том, что обе части выражения содержат искомые геометрические размеры фундамента. Но в предварительных расчетах вес грунта и фундамента в ABCD заменяют приближенно на:

, где

γm – среднее значение удельного веса фундамента и грунта на его уступах; γm=20 кН/м 3 ;

d – глубина заложения фундамента, м.

— необходимая площадь подошвы фундамента.

Тогда ширина подошвы (b):

а) в случае ленточного фундамента; A=b·1п.м.:

б) в случае столбчатого квадратного фундамента; A=b 2 :

в) в случае столбчатого прямоугольного фундамента:

— задаемся отношением длины фундамента (l) к его ширине (b) (т.к. фундамент повторяет очертание опирающейся на него конструкции).

Отсюда:

в) в случае столбчатого круглого фундамента:

b = D – диаметр фундамента.

После предварительного подбора ширины подошвы фундамента b=f(Ro) необходимо уточнить расчетное сопротивление грунта – R=f(b, φ, c, d, γ).

Зная точное R. Снова определяют b. Действия повторяют, пока два выражения не будут давать одинаковые значения для R и b.

После того. Как был подобран размер фундамента с учетом модульности и унификации конструкций проверяют действительное давление на грунт по подошве фундамента.

Чем ближе значение PII к R, тем более экономичное решение.

Этой проверкой мы проверяем возможность расчета по линейной теории деформации грунта.

Если условие не соблюдается, тогда расчет необходимо вести по нелинейной теории, что значительно его осложняет.

^ 1.3.в. Внецентренно нагруженные фундаменты

Это такие фундаменты, у которых равнодействующая внешних нагрузок (сил) не проходит через центр тяжести его подошвы.

Давление на грунт по подошве внецентренно нагруженного фундамента принимается изменяющимся по линейному закону, а его краевые значения определяются по формулам внецентренного сжатия.

Учитывая, что ,

Приходим к более удобному для расчета виду:

, где

NII – суммарная вертикальная нагрузка, включая Gf и Gg;

e – эксцентриситет равнодействующей относительно центра тяжести подошвы;

b – размер подошвы фундамента в плоскости действия момента.

^ Рис. 10.13. Эпюры давлений под подошвой фундамента при действии внецентренной нагрузки.

Двузначную эпюру стараются не допускать, т.к. в этом случае образуется отрыв фундамента от грунта.

Поскольку в случае действия внецентренного нагружения максимальное давление на основание действует только под краем фундамента, при подборе размеров подошвы фундамента давление допускается принимать на 20% больше расчетного сопротивления грунта, т.е.

, но

В тех случаях, когда точка приложения равнодействующей внешних сил смещена относительно обеих осей фундамента (рис 10.14), давление под ее угловыми точками находят по формуле:

Рис. 10.14. внецентренное загружение фундамента относительно двух глвных осей инерции:

а – смещение равнодействующих внешних сил; б – устройство несимметричного фундамента.

Поскольку в этом случае максимальное давление будет только в одной точке подошвы фундамента, допускается, чтобы его значение удовлетворяло условию:

, но при этом проверяются условия:

; — на наиболее нагруженной части.

^ 1.3.г. Порядок расчета внеценренно нагруженного фундамента

  1. Определяют размеры подошвы как для ценрально нагруженного фундамента.

;

  1. Для принятых размеров подошвы определяют краевые напряжения при внецентренном приложении нагрузки

  1. Проверяется условие
  2. Если равнодействующая сил смещена относительно обеих осей, тогда еще определяют краевые напряжения в угловых точках фундамента

5. Проверяют условие

1.3.д. Проверка давления на слабый подстилающий слой грунта (проверка подстилающего слоя).

При наличии в сжимаемой толщи слабых грунтов необходимо проверить давление на них, чтобы убедиться в возможности применения при расчете основания (осадок) теории линейной деформативности грунтов.

Необходимо, чтобы полное давление на кровлю подстилающего слоя не превышало его расчетного сопротивления, т.е.

, где

и — дополнительное и природное вертикальные напряжения в грунте на глубине z от подошвы фундамента;

Rz – расчетное сопротивление грунта на глубине кровли слабого слоя, определяют по формуле СНиП, как для условного фундамента шириной bz и глубиной заложения dz.

Все коэффициенты в формуле (γc1, γc2, k, Mq, Mg и т.д.) находят применительно к слою слабого грунта.

; ;

;

Рис. 10.15. Расчетная схема к проверке давления на подстилающий слой слабого грунта.

Ширину условного фундамента bz назначают с учетом рассеивания напряжений в пределах слоя толщиной z. Если принять. Что давление действует по подошве условного фундамента АВ, то площадь его подошвы будет составлять:

, где

NII – вертикальная нагрузка на уровне обреза фундамента;

— для ленточного фундамента

— для квадратного фундамента

— для условного прямоугольного фундамента ,

, где l и b – размеры подошвы проектируемого фундамента.

Если проверка подстилающего слоя не выполняется, необходимо увеличить размер подошвы фундамента.

^ 1.3.е. Расчет фундаментов на грунтовых (песчаных) подушках

Если несущий слой грунта оказывается слабым, и его использование в качестве естественного основания оказывается невозможным или нецелесообразным, то приводят замену слабого грунта другим, обладающим высоким сопротивлением сдвигу и имеющим малую сжимаемость, который образует, так называемую, грунтовую подушку.

Рис. 12.1. Устройство песчаных подушек при малой (а) и большой (б) толще слабых грунтов:

1 – фундамент; 2 – слабый грунт; 3 – песчаная подушка; 4 – плотный подстилающий грунт.

  • Подушки делают из:
  • Крупнообломочные грунты (гравий, щебень);
  • Пески крупные и средней крупности (удобнее и легче использовать);
  • Шлак;
  • В лессах – местный перемолотый грунт.
  • Чаще всего грунтовые подушки имеют толщину 1…3 м (>3м не целесообразно).
  • Используют подушки: (см. рис.)
  • При малой толще слабых грунтов — обыкновенная песчаная подушка;
  • При большой толще слабых грунтов — висячая песчаная подушка;
  • Такая форма песчаной подушки объясняется тем, что в ее зоне необходимо уместить все виды напряжений.

Тогда

  • Подушки отсыпаются слоями по 10…15 см, с уплотнением каждого слоя до γd = 16…16,5 кН/м 3 .

^ 1.3.ж. Последовательность расчета фундамента на песчаной подушке

  1. Задаемся характеристиками нового грунтового основания (т.е. характеристиками песчаной подушки)

γ=19 кН/м 3 ; φ=35º; с=0

  1. Определяют размеры подошвы фундамента как фундамента, стоящего на грунте с выше перечисленными характеристиками.

P≤R

  1. Проверяем подстилающий слой

Если это условие не выполняется, то увеличивают высоту висячей подушки.

  1. Далее производится расчет деформаций основания. Совместная деформация песчаной подушки и подстилающего слоя S должна быть меньше Su.

S ≤ Su

Если это условие не выполняется. То также увеличивают высоту висячей подушки (или размеры фундамента).

  • Применение песчаной подушки приводит к следующим положительным эффектам:
  1. Поскольку модуль общей деформации песчаной подушки Е>20 МПа, то их примение приводит к уменьшению осадок сооружения.
  2. Поскольку песчаные подушки имеют большой коэффициент фильтрации (сильноводопроницаемы), то резко сокращается время консолидации основания.
  3. Песчаные подушки устраиваются из непучинистых грунтов (материалов), поэтому есть возможность уменьшить глубину заложения фундамента d из условия учета глубины сезонного промерзания грунта df.

Стр 9

Источник

Оцените статью