- Расчет нагрузки на фундамент — калькулятор веса дома.
- Работа с калькулятором
- buildingbook.ru
- Информационный блог о строительстве зданий
- Расчёт столбчатого фундамента под колонну при действии вертикальной нагрузки и момента в двух направлениях
- Исходные данные
- Расчёт фундамента
- Глубина заложения фундамента
- Предварительные размеры фундамента
- Расчёт максимального и минимального краевого давления
- This article has 4 Comments
Расчет нагрузки на фундамент — калькулятор веса дома.
Расчет нагрузки на фундамент от будущего дома наряду с определением свойств грунта на участке застройки — это две первоочередные задачи, которые нужно выполнить при проектировании любого фундамента.
О приблизительной оценке характеристик несущих грунтов своими силами говорилось в статье «Определяем свойства грунтов на участке застройки» . А здесь представлен калькулятор, с помощью которого можно определить общий вес строящегося дома. Полученный результат используется для расчёта параметров выбранного типа фундамента. Описание структуры и работы калькулятора приводится непосредственно под ним.
Работа с калькулятором
Шаг 1: Отмечаем имеющуюся у нас форму коробки дома. Есть два варианта: либо коробка дома имеет форму простого прямоугольника (квадрата), либо любую другую форму сложного многоугольника (в доме больше четырёх углов, имеются выступы, эркеры и т.п.).
При выборе первого варианта необходимо задать длину (А-В) и ширину (1-2) дома, при этом нужные для дальнейшего расчёта значения периметра наружных стен и площади дома в плане высчитываются автоматически.
При выборе же второго варианта периметр и площадь необходимо рассчитать самостоятельно (на бумажке), т.к варианты формы коробки дома очень разнообразны и у всех свои. Полученные цифры заносятся в калькулятор. Обращайте внимание на единицы измерения. Расчеты ведутся в метрах, в квадратных метрах и килограммах.
Шаг 2: Указываем параметры цоколя дома. Простыми словами, цоколь — это нижняя часть стен дома, возвышающаяся над уровнем грунта. Он может исполняться в нескольких вариантах:
- цоколь является верхней частью ленточного фундамента выступающей над уровнем грунта.
- цоколь является отдельной частью дома материал которой отличается и от материала фундамента и от материала стен, например, фундамент из монолитного бетона, стены из бруса, а цоколь из кирпича.
- цоколь выполняется из того же материала, что и наружные стены, но так как он часто облицовывается другими материалами нежели стены и не имеет внутренней отделки, поэтому мы считаем его отдельно.
В любом случае высоту цоколя отмеряйте от уровня грунта до уровня, на который ложится цокольное перекрытие.
Шаг 3: Указываем параметры наружных стен дома. Высота их отмеряется от верха цоколя до крыши либо до основания фронтона, так как отмечено на рисунке.
Суммарную площадь фронтонов также как и площадь оконных и дверных проёмов в наружных стенах необходимо рассчитать исходя из проекта самостоятельно и внести полученные значения в калькулятор.
В расчёт заложены среднестатистические цифры удельного веса оконных конструкций с двухкамерным стеклопакетом (35 кг/м²) и дверей (15 кг/м²).
Шаг 4: Указываем параметры перегородок в доме. В калькуляторе несущие и не несущие перегородки считаются отдельно. Сделано это специально, так как в большинстве случаев несущие перегородки более массивные (они воспринимают нагрузку от перекрытий или крыши). А не несущие перегородки являются просто ограждающими конструкциями и могут возводиться, к примеру, просто из гипсокартона.
Шаг 5: Указываем параметры крыши. В-первую очередь выбираем её форму и уже исходя из неё задаём нужные размеры. Для типовых крыш площади скатов и углы их наклона рассчитываются автоматически. Если же Ваша крыша имеет сложную конфигурацию, то площадь её скатов и угол их наклона, необходимые для дальнейших расчётов, придётся определять опять же самостоятельно на бумажке.
Вес кровельного покрытия в калькуляторе рассчитывается с учётом веса стропильной системы, принятого равным 25 кг/м².
Далее для определения снеговой нагрузки необходимо по прилагаемой карте выбрать номер подходящего района.
Расчёт в калькуляторе производится на основании формулы (10.1) из СП 20.13330.2011 (Актуализированная версия СНиП 2.01.07-85*):
где 1,4 — коэффициент надёжности по снеговой нагрузке принятый по пункту (10.12);
0,7 — понижающий коэффициент зависящий от средней температуры в январе для данного региона. Данный коэффициент принимается равным единице при средней январской температуре выше -5º С. Но так как практически на всей территории нашей страны средние январские температуры ниже этой отметки (видно на карте 5 приложения Ж данного СНиПа), то в калькуляторе изменение коэффициента 0,7 на 1 не предусмотрено.
ce и ct — коэффициент, учитывающий снос снега и термический коэффициент. Их значения приняты равными единице для облегчения расчётов.
Sg — вес снегового покрова на 1 м² горизонтальной проекции крыши, определяется исходя из выбранного нами снегового района по карте;
μ — коэффициент, значение которого зависит от угла наклона скатов крыши. При угле более 60º μ =0 (т.е. снеговая нагрузка вообще не учитывается). При угле менее 30º μ =1. При промежуточных значениях угла наклона скатов необходимо производить интерполяцию. В калькуляторе это делается на основании простой формулы:
μ = 2 — α/30 , где α — угол наклона скатов в градусах
Шаг 6: Указываем параметры перекрытий. Помимо веса самих конструкций в расчёт заложена эксплуатационная нагрузка равная 195 кг/м² для цокольного и межэтажных перекрытий и 90 кг/м² для чердачного перекрытия.
Внеся все исходные данные, нажмите кнопку «РАССЧИТАТЬ!». При каждом изменении какого-либо исходного значения для обновления результатов также нажимайте данную кнопку.
Обратите внимание! Ветровая нагрузка при сборе нагрузок на фундамент в малоэтажном строительстве не учитывается. Можно посмотреть пункт (10.14) СНиП 2.01.07-85* «Нагрузки и воздействия».
Источник
buildingbook.ru
Информационный блог о строительстве зданий
- Home
- /
- Железобетонные конструкции
- /
- Конструкции зданий и сооружений
- /
- Расчёт столбчатого фундамента под колонну при действии вертикальной нагрузки и момента в двух направлениях
Расчёт столбчатого фундамента под колонну при действии вертикальной нагрузки и момента в двух направлениях
Ранее мы рассматривали расчёт столбчатого фундамента при действии только вертикальной нагрузки и при действии изгибающего момента в одной плоскости.
В этой статье рассмотрим расчёт фундамента под колонну по 1-му предельному состоянию при нагружении фундамента вертикальной нагрузкой и горизонтальной нагрузкой с изгибающими моментами, действующими в двух плоскости.
Как правило, колонну здания закрепляют жёстко только в одном направлении, а в другом закрепляют шарнирно обеспечивая жёсткость каркаса установкой связей, однако даже на фундамент не прилагается изгибающий момент от колонны, он всё равно может появиться из-за действия поперечной нагрузки на уровне закрепления фундамента.
Исходные данные
Исходными данными для расчёта фундамента будут нагрузки, приходящие на фундамент от колонны и инженерно-геологические изыскания.
В результате расчёта рамы в расчётной программе получили следующие нагрузки на фундамент:
N=21.3 т (вертикальная нагрузка)
Mx=14.8 т*м (изгибающий момент)
My=1 т*м (изгибающий момент)
Qx=2.8 т (поперечная нагрузка)
Qy=0,5 т (поперечная нагрузка)
Хочу отметить, что лучше всего проверить 2-а расчётных сочетания:
- Полная ветровая, снеговая, вес конструкций, равномерно-распределённая
- Полная ветровая и вес конструкций
Дело в том, что одно из условий расчёта является недопущение отрыва края фундамента от земли и при отсутствии снеговой нагрузки вертикальная нагрузка будет меньше и соответственно меньше сопортивления изгибающему моменту.
Также нужно отметить, что при расчёте изгибающего момента от действия ветра нужно брать отдельно изгибающий момент в 2-х плоскостях. Т.е. когда изгибающий момент от действия ветра в одной оси даёт положительное значение, в другой оно равно нулю. В этом случае нужно также считать 2-а отдельных сочетания: при действии ветровой нагрузки вдоль оси Х и при действии ветровой нагрузки вдоль оси Y.
Схему приложения нагрузок см. на рисунке ниже.
Глубина сезонного промерзания – 1,79 м;
Уровень грунтовых вод 1,6 м;
Прочностные свойства грунтов определяются по инженерно-геологическим изысканиям. Для этого ищем инженерно-геологический разрез под нужный фундамент и таблицу с нормативными и расчётными характеристиками грунтов. Для расчёта по 1-му предельному состоянию (расчёту на прочность) необходимы расчётные характеристики при α=0.95 (доверительная вероятность расчётных значений), согласно п.5.3.17 СП 22.13330.2016.
ИГЭ-1 — насыпной грунт — песок разной крупности c вкл. строительного мусора до 15-20%, комки суглика, обломки ж.д. плит (в расчёте не участвует т.к. отметка низа фундамента находится ниже этого слоя грунта);
ИГЭ-2 — песок средней крупности, средней плотности, водонасыщенный: (e=0.65, ρ=1,8 т/м³, Е=30 МПа, ϕ=35°, С=1 кПа).
ИГЭ-3 — песок средней крупности, с редкими прослоями текучей супеси, суглинка, глиниcтый средней плотности, водонасыщенный: (e=0.6, ρ=1,82 т/м³, Е=35 МПа, ϕ=36°, С=1,5 кПа).
Уровень грунтовых вод 1,8 м от уровня земли.
Расчёт фундамента
Схема приложения нагрузок на фундамент выглядит следующим образом:
Глубина заложения фундамента
Глубину заложения фундамента определяем в зависимости от максимальной глубины сезонного промерзания, которая дана в отчёте по инженерно-геологическим изысканиям. В моём случае нормативная глубина сезонного промерзания равна dfn=1,79м.
Расчётная глубина сезонного промерзания вычисляется по формуле 5.4 СП 22.13330.2016
где kh — коэффициент, учитывающий влияние теплового режима сооружения, принимаемый для наружных фундаментов отапливаемых сооружений — по таблице 5.2 СП 22.13330.2016; для наружных и внутренних фундаментов неотапливаемых сооружений kh=1,1, кроме районов с отрицательной среднегодовой температурой;
В нашем случае здание неотапливаемое, поэтому
Глубина заложения фундамента должна быть не выше расчётной глубины промерзания (согласно таблице 5.3 СП 22.13330.2016). Для отапливаемых зданий допускается устраивать фундаменты внутри здания (не под наружными стенами) выше глубины промерзания, но должно быть гарантировано, что в холодное время года будет отопление здания. Если же допускается, что здание могут подвергнуть консервации или отключить отопление, тогда и внутренние фундаменты также должны быть заложены на расчётную глубину промерзания.
Предварительные размеры фундамента
Определяем предварительно площадь основания фундамента.
Предварительные размеры фундамента определяем по формуле:
N — вертикальная нагрузка от колонны, которую мы получили при расчёте каркаса здания (N=21,3 т=213 кН);
R0 – расчётное сопротивление грунта, предназначенное для предварительного расчёта приведены в Приложении Б СП 22.13330.2016 (в нашем случае Таблица Б.2 для песка средней крупности и средней плотности R0 = 400кПа, для глины и других грунтов см. другие таблицы в приложении Б);
Таблица Б.2 — Расчетные сопротивления R0 песков
Пески | Значения R0, кПа, в зависимости от плотности сложения песков | |
плотные | средней плотности | |
Крупные | 600 | 500 |
Средней крупности | 500 | 400 |
Мелкие: | ||
маловлажные | 400 | 300 |
влажные и насыщенные водой | 300 | 200 |
Пылеватые: | ||
маловлажные | 300 | 250 |
влажные | 200 | 150 |
насыщенные водой | 150 | 100 |
ȳ — среднее значение удельного веса фундамента и грунта на его обрезах, предварительно принимаемое ȳ=20 кН/м³;
d – глубина заложения фундамента (в нашем случае d=2 м)
+20% т.к. фундамент внецентренно сжатый 0,72 м²
Размеры подошвы фундамента назначаются с шагом 0,3 м, размером не менее 1,5х1,5м (Таблица 4 Пособия по проектированию фундаментов на естественном основании)
Таблица 4 Пособия по проектированию фундаментов на естественном основании
Эскиз фундамента | Модульные размеры фундамента, м, при модуле, равном 0,3 | ||||||||
h | hpl | соответственно hpl | подошвы | подколонника | |||||
h1 | h2 | h3 | квадратной b ´ l | прямоугольной b ´ l | под рядовые колонны bcf ´ lcf | под колонны в температурных швах bcf ´lcf | |||
1,5 | 0,3 | 0,3 | — | — | 1,5´1,5 | 1,5´1,8 | 0,6´0,6 | 0,6´1,8 | |
1,8 | 0,6 | 0,3 | 0,3 | — | 1,8´1,8 | 1,8´2,1 | 0,6´0,9 | 0,9´2,1 | |
2,1 | 0,9 | 0,3 | 0,3 | 0,3 | 2,1´2,1 | 1,8´2,4 | 0,9´0,9 | 1,2´2,1 | |
2,4 | 1,2 | 0,3 | 0,3 | 0,6 | 2,4´2,4 | 2,1´2,7 | 0,9´1,2 | 1,5´2,1 | |
2,7 | 1,5 | 0,3 | 0,6 | 0,6 | 2,7´2,7 | 2,4´3,0 | 0,9´1,5 | 1,8´2,1 | |
3,0 | 1,8 | 0,6 | 0,6 | 0,6 | 3,0´3,0 | 2,7´3,3 | 1,2´1,2 | 2,1´2,1 | |
3,6 | — | — | — | — | 3,6´3,6 | 3,0´3,6 | 1,2´1,5 | 2,1´2,4 | |
4,2 | — | — | — | — | 4,2´4,2 | 3,3´3,9 | 1,2´1,8 | 2,1´2,7 | |
Далее с шагом | — | — | — | — | 4,8´4,8 | 3,6´4,2 | 1,2´2,1 | — | |
5,4´5,4 | 3,9´4,5 | 1,2´2,4 | — | ||||||
0,3 м | — | — | — | — | — | 4,2´4,8 | 1,2´2,7 | — | |
или | — | — | — | — | — | 4,5´5,1 | — | — | |
0,6 | — | — | — | — | — | 4,8´5,4 | — | — | |
— | — | — | — | — | 5,1´5,7 | — | — | ||
— | — | — | — | — | 5,4´6,0 | — | — |
Предварительно назначаем фундамент 1,5х1,5=2,25 м², что больше предварительного минимума 0,72 м².
Расчёт максимального и минимального краевого давления
Максимальное и минимальное краевое давление находим по формуле 5.11 СП 22.13330.2016 (в формуле момент разложен на 2-е составляющие)
Где N=21,3т=213 кН вертикальная нагрузка от колонны в кН;
Аф=2,25 м² – площадь фундамента, м²;
γmt – средневзвешенное значение удельных весов тела фундамента, грунтов и полов, принимаемое 20 кН/м³;
d=2 – глубина заложения фундамента, м;
Mx-момент от равнодействующей всех нагрузок, действующий по подошве фундамента в кН*м, находим по формуле:
W – момент сопротивления подошвы фундамента, м³. Для прямоугольного сечения находится по формуле W=bl²/6 где в нашем случае b – это сторона подошвы фундамента вдоль буквенной оси, l – длина стороны подошвы фундамента вдоль цифровой оси (см. картинку ниже).
Т.к. предварительно мы приняли фундамент с размерами 1,5х1,5 м, то
Wx= bl²/6=1.5*1.5²/6=0.5625 м³
Wy= lb²/6=1.5*1.5²/6=0.5625 м³
При действии вертикальной нагрузки на фундамент совместно с изгибающим моментом у нас может быть 3 варианта эпюр давления на грунты:
- Треугольная с отрывом края фундамента
Нельзя допускать, чтобы происходил отрыв фундамента, т.е. Pmin всегда должен быть ≥0.
В нашем случае Pmin 0,5 1,1 1,0 1,0 Примечания
1 К сооружениям с жесткой конструктивной схемой относят сооружения, конструкции которых специально приспособлены к восприятию усилий от деформации оснований, в том числе за счет мероприятий, указанных в 5.9.
2 Для зданий с гибкой конструктивной схемой значение коэффициента γс2 принимают равным единице.
3 При промежуточных значениях L/H коэффициент γс2 определяют интерполяцией.
4 Для рыхлых песков γс1 и γс2 , принимают равными единице.
k=1 (п.5.6.7 СП 22.13330.2016 коэффициент, принимаемый равным единице, если прочностные характеристики грунта (φII и СII ) определены непосредственными испытаниями, и k=1,1, если они приняты по таблицам приложения А).
My=1,68 (таблица 5.5 СП 22.13330.2016)
Mq=7,71 (таблица 5.5 СП 22.13330.2016)
Mc=9,58 (таблица 5.5 СП 22.13330.2016)
Тут хочу обратить внимание, несмотря на то, что мы опираемся на грунт ИГЭ-3, грунт ИГЭ-2 имеет более низкие прочностные характеристики и он заложен ниже грунта ИГЭ-3, поэтому мы принимаем считаем несущую способность основания по ИГЭ-2.
Таблица 5.5 СП 22.13330.2016
Угол внутреннего трения φII, град. | Коэффициенты | ||
My | Mq | Mc | |
0 | 0 | 1,00 | 3,14 |
1 | 0,01 | 1,06 | 3,23 |
2 | 0,03 | 1,12 | 3,32 |
3 | 0,04 | 1,18 | 3,41 |
4 | 0,06 | 1,25 | 3,51 |
5 | 0,08 | 1,32 | 3,61 |
6 | 0,10 | 1,39 | 3,71 |
7 | 0,12 | 1,47 | 3,82 |
8 | 0,14 | 1,55 | 3,93 |
9 | 0,16 | 1,64 | 4,05 |
10 | 0,18 | 1,73 | 4,17 |
11 | 0,21 | 1,83 | 4,29 |
12 | 0,23 | 1,94 | 4,42 |
13 | 0,26 | 2,05 | 4,55 |
14 | 0,29 | 2,17 | 4,69 |
15 | 0,32 | 2,30 | 4,84 |
16 | 0,36 | 2,43 | 4,99 |
17 | 0,39 | 2,57 | 5,15 |
18 | 0,43 | 2,73 | 5,31 |
19 | 0,47 | 2,89 | 5,48 |
20 | 0,51 | 3,06 | 5,66 |
21 | 0,56 | 3,24 | 5,84 |
22 | 0,61 | 3,44 | 6,04 |
23 | 0,66 | 3,65 | 6,24 |
24 | 0,72 | 3,87 | 6,45 |
25 | 0,78 | 4,11 | 6,67 |
26 | 0,84 | 4,37 | 6,90 |
27 | 0,91 | 4,64 | 7,14 |
28 | 0,98 | 4,93 | 7,40 |
29 | 1,06 | 5,25 | 7,67 |
30 | 1,15 | 5,59 | 7,95 |
31 | 1,24 | 5,95 | 8,24 |
32 | 1,34 | 6,34 | 8,55 |
33 | 1,44 | 6,76 | 8,88 |
34 | 1,55 | 7,22 | 9,22 |
35 | 1,68 | 7,71 | 9,58 |
36 | 1,81 | 8,24 | 9,97 |
37 | 1,95 | 8,81 | 10,37 |
38 | 2,11 | 9,44 | 10,80 |
39 | 2,28 | 10,11 | 11,25 |
40 | 2,46 | 10,85 | 11,73 |
41 | 2,66 | 11,64 | 12,24 |
42 | 2,88 | 12,51 | 12,79 |
43 | 3,12 | 13,46 | 13,37 |
44 | 3,38 | 14,50 | 13,98 |
45 | 3,66 | 15,64 | 14,64 |
kz=1 (п.5.6.7 СП 22.13330.2016 коэффициент, принимаемый равным единице при b 150 кПа, поэтому увеличивать размеры фундамента нет необходимости.
Следовательно, фундамент удовлетворяет требованиям по несущей способности основания.
После этого нужно сконструировать фундамент, назначить размеры, арматуру, бетон, что обязательно рассмотрю в следующих статьях.
Расчётную программу в Excel можно скачать по ссылке
This article has 4 Comments
Здравствуйте! Спасибо за статью.
При определение удельного веса грунта с учетом взвешивающего действия воды используется удельный вес частиц γs и он обычно для песков равен 2,7т/м3.
В пункте п.5.6.26 СП 22.13330.2016 указано, что надо сравнивать давление Pmax c R*1.2 для краевых точек и R*1.5 для угловых.
Во всех статьях по фундаментам и файле для расчета такое.
Спасибо за полезную статью!
Будем ждать расчёт осадки грунтов основания и расчёт крена фундамента.
Здравствуйте!
Подскажите пожалуйста, почему в расчёте не учитывается собственный вес фундамента и вес грунта на уступах фундамента?
Учитывается через γmt – средневзвешенное значение удельных весов тела фундамента, грунтов и полов, принимаемое 20 кН/м³ которое умножается на высоту заглубления.
Источник