Теплотехнический расчёт наружной кирпичной стены
Цель работы:определить толщину ограждающей конструкции кирпичной стены на основании требований строительной теплотехники.
Знать:теплоизоляционные функции наружных ограждающих конструкций и теплотехнические требования к ним.
Уметь:определять понятие «ограждающая конструкция», причины, требующие теплотехнического расчёта ограждающей конструкции.
Краткие теоретические сведения
К ограждающим элементам здания в теплотехническом отношении предъявляются следующие требования:
· оказывать сопротивление прохождению через них тепла;
· не иметь на внутренней поверхности температуры, значительно отличающейся от температуры воздуха помещения, с тем, чтобы вблизи ограждения не ощущалось холода, а на поверхности не образовывался конденсат;
· обладать достаточной тепловой инерцией (теплоустойчивостью), чтобы колебания наружной и внутренней температур меньше отражались на колебаниях температуры внутренней поверхности;
· сохранять нормальный влажностный режим, т.к. увлажнение ограждения снижает его теплозащитные свойства.
Для выполнения перечисленных требований при проектировании ограждений производят их теплотехнический расчёт на основании данных СНиП ΙΙ-3-79* “Строительная теплотехника” и СНиП ΙΙ-23-01-99 “Строительная климатология»
Порядок выполнения теплотехнического расчёта рассмотрим на примере.
Порядок выполнения работы
1. Из СНиПов выписываем следующие данные для расчёта:
Район строительства – г. Новочеркасск;
Зона влажности – сухая;
Назначение здания – жилой дом;
Влажностный режим помещения – нормальный;
Условия эксплуатации – А;
Расчётная зимняя температура, равная температуре наиболее холодной пятидневки = — 22ºС;
Средняя температура отопительного периода-1,1ºС;
Относительная влажность воздуха: 60%;
Коэффициент теплоотдачи для внутренних стен =8,7 Вт/м²×ºС;
Коэффициент теплоотдачи для наружных стен в зимних условиях =8,7 Вт/м²×ºС;
Коэффициент, зависящий от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху П=1;
Нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающих конструкций =4 ºС;
2. Согласно заданию стена состоит из керамического пустотелого кирпича плотностью ρ=1400 кг/м³ (брутто) на цементно-песчаном растворе с оштукатуриванием внутренней поверхности известково-песчаным раствором толщиной =0,02 м.
Рис. 1. Схема наружной стены
Определяем требуемое сопротивление теплопередаче
3. Определяем минимальную толщину стены , исходя из санитарно-гигиенических и комфортных условий, приравнивая фактическое сопротивление теплопередаче всех слоев стены требуемому сопротивлению.
Отсюда м,
где и
— коэффициент теплопроводности соответственно кирпичной кладки стены и штукатурки. Таким образом, из санитарно-гигиенических и комфортных условий толщину стены принимаем 0,64 м (в 2,5 кирпича).
4. Для определения толщины стены из условий энергосбережения подсчитываем градусосутки отопительного периода (ГСОП).
ГСОП=
где Z – продолжительность суток со среднесуточной температурой воздуха меньше или равной +8ºС — 175 сут. (СНиП 23-01-99 «Строительная климатология»)
ГСОП= ºС×сут.
Определяем методом интерполяции из СНиП ΙΙ-3-79* «Строительная теплотехника».
ГСОП | |
2,1 2,8 |
Сопротивление теплопередаче для ГСОП
=2,1+0,47=2,57
5. Определяем толщину стены по энергосбережению
м
Таким образом, толщина стены по энергосбережению должна быть в 2,4 раза больше рассчитанной из санитарно-гигиенических и комфортных условий, что повлечет за собой увеличение нагрузки на фундаменты в несколько раз.
6. С целью уменьшения толщины стены принимаем взамен сплошной кладки трехслойный вариант с утеплителем (колодцевая кладка). Кладка наружного слоя ведется под расшивку.
Кирпичная кладка из обыкновенного кирпича на цементно-песчаном растворе ρ=1800 кг/м³ λ=0,70 Вт/м²×ºС | Утеплитель газобетон ρ=400 кг/м³ λ=0,15 Вт/м²×ºС | Кирпичная кладка из обыкновенного кирпича на цементно-песчаном растворе ρ=1800 кг/м³ λ=0,70 Вт/м²×ºС | Известково-песчаный раствор δ=20мм ρ=1700 кг/м³ λ=0,70 Вт/м²×ºС. |
Рис.2. Схема наружной стены неоднородной кладки с утеплителем.
Определяем толщину :
где и
=0,81 Вт/м²×ºС — коэффициенты теплопроводности кирпичной кладки;
=0,81 Вт/м²×ºС – коэффициент теплопроводности известково-песчаного раствора.
7. Общая толщина стены без штукатурки составит:
=0,12+0,31+0,12=0,55 м
8. Полученная толщина стены не кратна стандартной 0,64 м (2,5 кирпича), поэтому принимаем =0,64 м и уточняем требуемую толщину утеплителя:
=0,64-(0,12+0,12)=0,4 м
Окончательно принимаем толщину наружной стены 640 мм (2,5 кирпича).
Контрольные вопросы
1. Назовите теплотехнические требования, предъявляемые к наружным ограждающим конструкциям отапливаемых зданий.
2. Назовите мероприятия по предотвращению конденсации влаги внутренних ограждений.
ПРАКТИЧЕСКАЯ РАБОТА 11
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Источник
Расчет кирпичной кладки на прочность
Наружные несущие стены должны быть, как минимум, рассчитаны на прочность, устойчивость, местное смятие и сопротивление теплопередаче. Чтобы узнать, какой толщины должна быть кирпичная стена, нужно произвести ее расчет. В этой статье мы рассмотрим расчет несущей способности кирпичной кладки, а в следующих статьях — остальные расчеты. Чтобы не пропустить выход новой статьи, подпишитесь на рассылку и вы узанете какой должна быть толщина стены после всех расчетов. Так как наша компания занимается строительством коттеджей, то есть малоэтажным строительством, то все расчеты мы будем рассматривать именно для этой категории.
Несущими называются стены, которые воспринимают нагрузку от опирающихся на них плит перекрытий, покрытий, балок и т.д.
Также следует учесть марку кирпича по морозостойкости. Так как каждый строит дом для себя, как минимум на сто лет, то при сухом и нормальном влажностном режиме помещений принимается марка (Мрз) от 25 и выше.
При строительстве дома, коттеджа, гаража, хоз.построек и др.сооружений с сухим и нормальным влажностным режимом рекомендуется применять для наружных стен пустотелый кирпич, так как его теплопроводность ниже, чем у полнотелого. Соответственно, при теплотехническом расчете толщина утеплителя получится меньше, что сэкономит денежные средства при его покупке. Полнотелый кирпич для наружных стен необходимо применять только при необходимости обеспечения прочности кладки.
Армирование кирпичной кладки допускается только лишь в том случае, когда увеличение марки кирпича и раствора не позволяет обеспечить требуемую несущую способность.
Пример расчета кирпичной стены.
Исходные данные: Рассчитать стену первого этажа двухэтажного коттеджа на прочность. Стены выполнены из кирпича М75 на растворе М25 толщиной h=250мм, длина стены L=6м. Высота этажа H=3м.
Несущая способность кирпичной кладки зависит от многих факторов — от марки кирпича, марки раствора, от наличия проемов и их размеров, от гибкости стен и т.д. Расчет несущей способности начинается с определения расчетной схемы. При расчете стен на вертикальные нагрузки, стена считается опертой на шарнирно-неподвижные опоры. При расчете стен на горизонтальные нагрузки (ветровые), стена считается жестко защемленной. Важно не путать эти схемы, так как эпюры моментов будут разными.
Выбор расчетного сечения.
В глухих стенах за расчетное принимается сечение I-I на уровне низа перекрытия с продольной силой N и максимальным изгибающим моментом М. Часто опасным бывает сечение II-II, так как изгибающий момент чуть меньше максимального и равен 2/3М, а коэффициенты mg и φ минимальны.
В стенах с проемами сечение принимается на уровне низа перемычек.
Давайте рассмотрим сечение I-I.
Из прошлой статьи Сбор нагрузок на стену первого этажа возьмем полученное значение полной нагрузки, которая включает в себя нагрузки от перекрытия первого этажа P1=1,8т и вышележащих этажей G=G п +P 2 +G 2= 3,7т:
Плита перекрытия опирается на стену на расстоянии а=150мм. Продольная сила P1 от перекрытия будет находиться на расстоянии а / 3 = 150 / 3 = 50 мм. Почему на 1/3? Потому что эпюра напряжений под опорным участком будет в виде треугольника, а центр тяжести треугольника как раз находится на 1/3 длины опирания.
Нагрузка от вышележащих этажей G считается приложенной по центру.
Так как нагрузка от плиты перекрытия (P1) приложена не по центру сечения, а на расстоянии от него равном:
то она будет создавать изгибающий момент (М) в сечении I-I. Момент — это произведение силы на плечо.
Тогда эксцентриситет продольной силы N составит:
Так как несущая стена толщиной 25см, то в расчете следует учесть величину случайного эксцентриситета eν=2см, тогда общий эксцентриситет равен:
Прочность кл адки внецентренно сжатого элемента определяется по формуле:
Коэффициенты mg и φ1 в рассматриваемом сечении I-I равны 1.
— R — расчетное сопротивление кладки сжатию. Определяем по таблице 2 СНиП II-22-81 (скачать СНиП II-22-81). Расчетное сопротивление кладки из кирпича М75 на растворе М25 равно 11 кг/см 2 или 110 т/м 2
— Ac — площадь сжатой части сечения, определяется по формуле:
A — площадь поперечного сечения. Так как сбор нагрузок считали на 1 пог. метр, то и площадь поперечного сечения определяем от одного метра стены A = L * h = 1 * 0,25 = 0,25 м 2
— ω — коэффициент, определяемый по формуле:
ω = 1 + e0/h = 1 + 0,045/0,25 = 1,18 ≤ 1,45 условие выполняется
Несущая способность кладки равна:
Прочность кладки обеспечена.
Статья была для Вас полезной?
Источник