- Расчет осадки сваи как условного фундамента
- Определение осадки свайного фундамента, расчет осадки свайного фундамента
- Содержание статьи:
- 1. Расчет осадки свайно-винтового фундамента
- 1.1. Расчет осадки одиночной сваи
- Расчет осадки свайного фундамента
- 4. Расчет фундамента с применением пэвм
- 1. — Исходные данные:
Расчет осадки сваи как условного фундамента
Библиографическая ссылка на статью:
Мельников В.А., Алексеев Н.С., Ионов К.И. Сравнительный анализ методик расчета осадки свайных фундаментов // Современные научные исследования и инновации. 2015. № 9. Ч. 1 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2015/09/57462 (дата обращения: 17.08.2021).
На современном этапе развития фундаментов одной из главных задач является повышение эффективности проектировочных решений, разработка экономически обоснованных и конкурентоспособных решений
В настоящее время большой размах приобретает строительство на слабых водонасыщенных грунтах, когда строители используют под объекты площадки, которые ранее признавались геологами невыгодными для возведения сооружений.
В сложных инженерно-геологических условиях свайный вариант зачастую оказывается единственно возможным видом фундаментов. Свайные фундаменты применятся в тех случаях, когда грунты основания представлены насыпью большой мощности, илистыми отложениями, связными грунтами в текучем и текуче-пластичном состоянии и т.п. [13, 15].
Так как затраты на устройство подземной части здания составляют до 25% от общей стоимости, снизить эти показатели позволяет применение более экономичных и индустриальных свайных фундаментов.
Важнейшим резервом повышения эффективности свайных фундаментов является совершенствование определения их осадок на стадии проектирования.
Сложность работы сваи в грунте делает невозможным создание математически строгой теории надежности расчета. Поэтому используются различные инженерные методики расчета. Используемая в настоящее время нормативная литература в области проектирования свайных фундаментов содержит недостаточно информации и позволяет получать неоднозначные результаты.
Целью данной работы является сравнение результатов расчета осадок свайных фундаментов здания каркасного типа в заданных геологических условиях. Параметры здания и геологический разрез приняты одинаковыми для того, чтобы выявить влияние различных теоретических подходов к расчету осадок в СНиП 2.02.03.-85 «Свайные фундаменты» и СП 24.13330.2011 «Свайные фундаменты» (актуализированная редакция).
2. Расчет несущей способности свай
Характеристики грунтов и мощности слоев, слагающих грунтовое основание заданного сооружения, представлены в таблице 1.
Расчеты проводятся по двум группам предельных состояний [2]:Будем рассматривать висячие железобетонные сваи, призматической формы, квадратного поперечного сечения с заостренным концом. При этом размеры поперечного сечения принимаем 40 х 40 см, длину сваи 13 м.
1) по несущей способности – по прочности материала свай и материала ростверка (ведется на основное сочетание расчетных нагрузок);
2) по деформациям – по осадкам оснований свай и свайных фундаментов от вертикальных нагрузок (на основное сочетание нормативных нагрузок).
Сваю в составе фундамента и вне его по несущей способности грунтов основания следует рассчитывать исходя из условия [6]:
, (1)
где N — расчетная нагрузка, передаваемая на сваю (продольное усилие, возникающее в ней от расчетных нагрузок, действующих на фундамент при наиболее невыгодном их сочетании);
F d — расчетная несущая способность грунта основания одиночной сваи, называемая в дальнейшем несущей способностью сваи;
— коэффициент условий работы, учитывающий повышение однородности грунтовых условий при применении свайных фундаментов, принимаемый равным 1,15 при кустовом расположении свай;
— коэффициент надежности по назначению (ответственности) сооружения, принимаемый равным 1,15;
— коэффициент надежности примем равным 1,4, т. к. несущая способность сваи определена расчетом.
Несущую способность F d , висячей забивной сваи, погружаемой без выемки грунта, работающей на сжимающую нагрузку, следует определять как сумму сил расчетных сопротивлений грунтов основания под нижним концом сваи и на ее боковой поверхности по формуле [6]:
где c — коэффициент условий работы сваи в грунте, принимаемый c = 1;
R — расчетное сопротивление грунта под нижним концом сваи, принимаемое по таблице (табл. 7.2 [4]): R =5360 кПа;
A — площадь опирания на грунт сваи, м 2 , принимаемая равной площади поперечного сечения сваи: A =0,16 м 2 ;
u — наружный периметр поперечного сечения сваи, м: u =1,6 м;
f i — удельное сопротивление i-го слоя грунта основания на боковой поверхности сваи, принимаемое по таблице (табл. 7.3, [4]) в зависимости от глубины H i и вида грунта на этой глубине;
H i — глубина погружения средней точки i-го однородного участка грунта;
h i — толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;
cR , cf — коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения сваи на расчетные сопротивления грунта (табл. 7.4, [4]): .
Определим f i и и результаты сведём в таблицу 2:
Таблица 2
Источник
Определение осадки свайного фундамента, расчет осадки свайного фундамента
Статья расскажет о том, что такое осадка свайного фундамента, какие факторы на нее влияют, а также о том, как выполняется расчет осадки свайного фундамента.
Содержание статьи:
Осадка свайного фундамента – это перемещение свай под действием нагрузок и изменение их высотного уровня, возникающее в процессе их эксплуатации.
Как правило, причиной осадки становятся ошибки в расчетах восприимчивости фундамента к нагрузкам, допущенные на стадии проектирования. В результате в основании используются сваи с некорректными конструктивными параметрами: недостаточной длины или сечения (если речь идет о железобетонных конструкциях), с недостаточным диаметром или количеством лопастей (в случае с винтовыми конструкциями) и т.п.
Осадка может возникать под действием следующих факторов:
- недостаточная несущая способность грунта;
- значительные нагрузки на фундамент от массы здания, снегового и ветрового давления, эксплуатационных воздействий.
1. Расчет осадки свайно-винтового фундамента
Расчеты по деформациям свайного фундамента сводятся к определению осадки всего фундамента или отдельной сваи.
При расчете осадок группы свай необходимо учитывать их взаимное влияние. Данный расчет является весьма сложным, и задача решается с помощью трехмерного численного моделирования условного фундамента как анизотропного массива с учетом его конечной жесткости на сдвиг по вертикальным плоскостям.
Расчет осадки одиночных свай, прорезающих слой грунта, рассматривают как линейно-деформируемое полупространство, характеризуемое модулем сдвига G2 и коэффициентом Пуассона v2. При выполнении условии l/d > G1l/G2d > 1 (где l – длина сваи, м, d – наружный диаметр поперечного сечения ствола, м) осадку для винтовой сваи считают как для одиночной сваи с уширением пяты или сваи-стойки.
1.1. Расчет осадки одиночной сваи
Согласно СП 24.13330.2011 «Свайные фундаменты» расчет осадки одиночных свай, прорезающих слой грунта с модулем сдвига G1, МПа, коэффициентом Пуассона v1 и опирающихся на грунт, рассматриваемый как линейно-деформируемое полупространство, характеризуемое модулем сдвига G2 и коэффициентом Пуассона v2, допускается производить при выполнении требований подраздела 7.2 и при условии l/d>5; G1l/G2d>1 (где l – длина сваи, м, d – наружный диаметр поперечного сечения ствола, м) по формуле:
, (7.36)
db – диаметр уширения сваи;
N – вертикальная нагрузка, передаваемая на сваю, МН;
EA – жесткость ствола сваи на сжатие, МН;
A – площадь поперечного сечения сваи;
v – коэффициент Пуассона.
Коэффициент Пуассона для грунта (коэффициент поперечного расширения или коэффициент поперечной деформации или Poisson’s ratio) – это показатель деформируемости грунта, характеризующий отношение поперечных и продольных деформаций грунта (то есть отношение относительных поперечных деформаций к относительным продольным деформациям грунта).
При отсутствии экспериментальных данных, значения коэффициента Пуассона можно принять по п.5.4.7.5 ГОСТ 12248-96:
- для крупнообломочных грунтов равен 0,27;
- для песка составляет от 0,30 до 0,35 (в зависимости от плотности);
- для супеси составляет от 0,30 до 0,35 (в зависимости от плотности);
- для суглинков составляет от 0,35 до 0,37 (в зависимости от плотности);
- для твердой глины (при показателе текучести IL =0) составляет от 0,20 до 0,30 (в зависимости от плотности);
- для полутвердой глины (при показателе текучести IL от 0 до 0,25) составляет от 0,30 до 0,38 (в зависимости от плотности);
- для тугопластичной глины (при показателе текучести IL от 0,25 до 0,5) составляет от 0,38 до 0,45 (в зависимости от плотности);
- для мягкопластичной глины (при показателе текучести IL от 0,5 до 0,75) составляет от 0,38 до 0,45 (в зависимости от плотности);
- для текучепластичной глины (при показателе текучести IL от 0,75 до 1) составляет от 0,38 до 0,45 (в зависимости от плотности).
Меньшие значения коэффициента Пуассона необходимо применять при большей плотности грунта.
G – модуль сдвига, Мпа. Модулем сдвига называется характеристика деформируемости, определяемая отношением приложенного к грунту касательного напряжения к углу сдвига. Этот показатель используется при расчете устойчивости сооружений и массивов грунтов, давления грунтов на ограждения и подземные сооружения, при расчете осадок под свайными фундаментами.
Характеристики G1 и v1 принимаются осредненными для всех слоев грунта в пределах глубины погружения сваи, a G2 и v2 – в пределах 0,5 l, т.е. на глубинах от l до 1,5l от верха свай, при условии, что под нижними концами свай отсутствуют глинистые грунты текучей консистенции, органоминеральные и органические грунты.
Модуль сдвига грунта G = E0 / 2(1+v) допускается принимать равным 0,4E0, а коэффициент kv равным 2,0 (где E0 – модуль общей деформации).
Таким образом, расчет осадки свайного фундамента – достаточно сложная процедура, которая требует применения специальных знаний. Пренебрежение же данными расчетами может привести к негативным последствиям в процессе эксплуатации здания/сооружения.
Источник
Расчет осадки свайного фундамента
Осадка свайного фундамента определяется одним из методов механики грунтов как для условного фундамента на естественном основании. Границы условного фундамента определяются следующим образом (рис. 3.2):
— сверху — поверхностью планировки грунта;
— снизу — плоскостью на уровне нижних концов свай;
— с боков — вертикальными плоскостями, отстоящими от наружных граней крайних свай на величину .
Величина определяется как средневзвешенное значение угла внутреннего трения грунтов, прорезаемых сваями
, (3.13)
где и
— соответственно углы внутреннего трения (для расчетов по второму предельному состоянию) и толщины слоев грунта, пройденных сваями от подошвы ростверка.
В собственный вес условного фундамента при определении осадки включаются вес свай NCB и ростверка ,а также вес грунта
в объеме условного фундамента.
Размеры подошвы условного фундамента определяют по выражениям
(3.14)
(3.15)
где b, а — размеры в пределах внешних граней крайних свай, м;
l — глубина погружения сваи в грунт от низа ростверка, м.
Определяется площадь подошвы условного фундамента
Производится проверка условия
, (3.17)
где -расчетная нагрузка по обрезу фундамента, кН;
— вес ростверка и свай;
— вес грунта в пределах условного фундамента АВСД;
— расчетное сопротивление грунта на уровне подошвы условного фундамента АВСД, определяемого по формуле СНиП 5.01.-01- 2002 [3, с.50] для размеров
.
Если условие (3.17) не соблюдается, то можно увеличить расстояние между сваями или применить сваи большей длины.
Рис. 3.2 — Схема к расчету осадки свайного фундамента
4. Расчет фундамента с применением пэвм
Для второго сечения, указанного в задании, также необходимо определить размеры подошвы фундамента. Это можно осуществить по методике, изложенной в п.2.3, либо расчетом с использованием ПЭВМ.
На ПЭВМ расчеты можно выполнить используя программные продукты «Фундамент 10.1» либо «Мономах 4».
Пример результатов расчета
с использованием программы «Фундамент 10.1».
Cтолбчатый на естественном основании
1. — Исходные данные:
Тип грунта в основании фундамента:
Пылевато-глинистые, крупнообломочные с пылевато-глинистым заполнителем 0.25<IL<0.5
Источник