Расчет свайного фундамента по второй группе предельных состояний

Расчет свайных фундаментов по 2-ой группе предельных состояний (по деформациям)

Расчет свай и свайных фундаментов по деформациям следует производить исходя ив условия:

где Sn — предельное значение совместной деформации основания и сооружения, определяемой по таблице приложения 4 СНиП [10], Sn = 10 см;

S — совместная деформация основания и сооружения, определяемая расчетом в соответствии с указаниями приложения 2 СНиП [10].

Расчет фундамента из висячих свай и его основания по деформациям производят как для условного массивного фундамента на естественном основании в соответствии с требованиями СНиП [10]. Условный фундамент рассматривается как единый массив, ограниченный снизу плоскостью, проходящей через нижние концы свай, сверху — поверхностью планировки грунта, с боков — вертикальными плоскостями, отстоящими от наружных граней крайних рядов вертикальных свай на расстоянии а, равном:

где — осредненное расчетное значение угла внутреннего трения грунта, определяемое по формуле:

где — расчетное значение углов внутреннего трения для отдельных пройденных сваями слоев грунта толщиной hi.

Размеры подошвы условного свайного фундамента при этом находят по формулам:

где сb и с1 — расстояния между осями свай соответственно по поперечным и продольным осям, м;

mb и m1 — количество рядов свай по ширине и длине условного фундамента;

d — диаметр или сторона поперечного сечения сваи, м.

Расчетная нагрузка, передаваемая условным свайным фундаментом на грунт основания, принимается равномерно распределенной.

При этом также требуется выполнение основного требования расчета оснований по деформациям: среднее давление под подошвой условного фундамента PII не должно превышать расчетного сопротивления грунта основания R на этой глубине:

где Ау = bу×ly — площадь подошвы условного свайного фундамента, м 2 ;

bу, ly — ширина и длина подошвы условного фундамента, м,

для ленточного свайного фундамента ly= 1 м;

NII — расчетная нагрузка по второй группе предельных состояний, кН. определяемая по формуле:

где NoII — расчетная нагрузка от веса сооружения на уровне обреза фундамента, кН;

NCII, NpII, NблII, NгрII — нагрузка от веса соответственно свай, ростверка, фундаментных блоков и грунта в объеме условного свайного фундамента.

Расчетное сопротивление грунта основания R определяется как и при расчете фундаментов мелкого заложения, но ширина и глубина заложения принимаются для условного свайного фундамента.

Далее определяется осадка S условного свайного фундамента методом послойного суммирования, изложенного в расчете фундаментов мелкого заложения (см. п. 3.5).

Источник

Вопрос 3 – Расчет и проектирование свайных фундаментов

Основные положения расчета. Расчет свайных фундаментов и их оснований ведут по двум группам предельных состояний:

по первой группе – по несущей способности грунта основания свай; по устойчивости грунтового массива со свайным фундаментом; по прочности материала свай и ростверков;

по второй группе – по осадкам свайных фундаментов от вертикальных нагрузок; по перемещениям свай совместно с грунтом оснований от действия горизонтальных нагрузок и моментов; по образованию или раскрытию трещин в элементах железобетонных конструкций свайных фундаментов.

Расчет по несущей способности грунтов основания заключается в выполнении условия (8.12):

где N — расчетная нагрузка, передаваемая на сваю, кН;

Fd — несущая способность сваи, определяемая любым из известных методов;

γ k — коэффициент надежности, принимаемый равным:

1,2 – если несущая способность сваи определена по результатам ее испытания статической нагрузкой;

1,25 – по результатам динамических испытаний, выполненных с учетом упругих деформаций грунта, а также по результатам статического зондирования грунта или его испытания эталонной сваей или сваей – зондом;

1,4 – по результатам динамических испытаний свай, выполненных без учета упругих деформаций грунта, или расчетом практического метода.

Проверку устойчивости свайного фундамента совместно с грунтовым массивом производят только в случае передачи на свайные фундаменты больших горизонтальных нагрузок, а так же если фундамент расположен на косогоре или его основание имеет откосный профиль. Проверку производят по расчетной схеме сдвига грунта по цилиндрической поверхности скольжения.

Расчет свайных фундаментов по второй группе предельных состояний (по деформациям) при действии вертикальных нагрузок проводят из условия (8.1):

где Nd , Mx , My — расчетные усилия (вертикальная нагрузка, изгибающие моменты) в плоскости подошвы ростверка фундамента относительно главных центральных осей (Рисунок 21);

n – количество свай в фундаменте;

x i , y i — расстояния от главных осей до оси каждой сваи;

x и y — расстояния от главных осей до оси сваи, для которой вычисляется расчетная нагрузка.

Рисунок 30 – Размещение свай (а) и давление на грунт (б)

под подошвой фундамента устоя

В устоях наихудшее сочетание нагрузок в большинстве случаев вызывает внецентренное нагружение фундамента (Рисунок 30). Поэтому в устоях для лучшего использования несущей способности каждой сваи их размещают пропорционально эпюре давлений на грунт. Местоположение свай определяют путем разбиения эпюры давлений на участки равновеликой площади (объема). В центре тяжести площадок устанавливают сваи (Рисунок 31) и корректируют расстояния между ними в соответствии со СНиПами.

Рисунок 31 – Размещение свай под промежуточной опорой с разбиением

эпюры давлений на участки равновеликой площади (объема)

В промежуточных опорах балочных мостов, как правило, сваи располагают симметрично относительно продольной оси, так как изгибающий момент вдоль моста от сил торможения и трения в опорных частях моста может быть направлен в разные стороны.

При симметричном расположении свай (Рисунок 31) расчетную нагрузку определяют по формуле (8.14):

где Nd , Mx , My — расчетные усилия (вертикальная нагрузка, изгибающие моменты) в плоскости подошвы ростверка фундамента относительно главных центральных осей (Рисунок 30);

n – количество свай в фундаменте;

x i , y i — расстояния от главных осей до оси каждой сваи;

∑y 2 i и ∑ x 2 i — подсчитывают для половины количества свай в ряду и половины рядов свай;

ymax и xmax — максимальные расстояния от главных осей до оси наиболее удаленной сваи, для которой вычисляется расчетная нагрузка.

m1 , m2 — соответствующее количество свай в ряду и количество рядов свай.

Полная нагрузка F на сваю состоит из расчетной нагрузки на сваю N и нагрузки от веса сваи G:

Для свай, работающих на выдергивание, полная нагрузка:

Полная нагрузка на сваю должна быть меньше несущей способности сваи по материалу или по грунту, значения которых определяют по вышеизложенным формулам:

При расстояниях между сваями меньше 6d сильно уплотненный сваями грунт образует грунтосвайный блок, основанием которого является подстилающий слой грунта в уровне низа свай.

Размеры условного фундамента принимают в виде прямоугольного параллепипеда, ограниченного зоной уплотнения грунта (Рисунок 32), с наклоном граней под углом φm / 4. Среднее значение расчетного угла внутреннего трения грунта φ m , прорезанных сваями, определяют по формуле:

где φ i — расчетный угол внутреннего трения i – го слоя грунта, расположенного в пределах глубины погружаемых свай в грунт;

h i — толщина i – го слоя грунта, м;

d — глубина погружения свай в грунт от его расчетной поверхности, м.

Рисунок 32 – Схема проверки несущей способности основания

Несущую способность грунта основания под подошвой условного фундамента проверяют по среднему давлению Р :

где Nс — нормальная составляющая давления условного фундамента на грунт основания, с учетом грунтового массива 1-2-3-4 и заключенными в нем сваями, кН;

γ n — коэффициент надежности;

R – расчетное сопротивление грунта под нижним концом сваи.

Выдергивающие нагрузки.Несущую способность Fdu висячих забивных свай и свай оболочек, погружаемых без выемки грунта, работающих на выдергивание (опоры технологического оборудования и ЛЭП, анкерные устройства и т.д.), определяют по формуле (8.19):

где γ с — коэффициент условий работы сваи в грунте, принимаемый равным 0,6 для свай , погружаемых в грунт на глубину менее 4 м, γ с = 0,8 – для свай погружаемых в грунт на глубину 4 м, и более;

γ c f — коэффициенты условий работы грунта на боковой поверхности сваи, учитывающие влияние способа погружения сваи на расчетные сопротивления грунта;

u – периметр поперечного сечения сваи, м;

f i — расчетное сопротивление i — го слоя грунта основания по боковой поверхности сваи, кПа;

h i — толщина слоя грунта, соприкасающегося с боковой поверхностью сваи, м.

Предельную нагрузку Nпр на сваю по грунту определяют по формуле (8.21):

где γ g — коэффициент надежности по грунту для опор мостов. При низком ростверке висячих свай и свай – стоек, при высоком ростверке – только при сваях – стойках принимают равным 1,4. В остальных случаях принимают по таблице 8.3 в зависимости от числа свай n.

Таблица 8.3 — Коэффициент надежности по грунту для опор мостов

Число свай в кусте , n 11…20 6…10 1…5
Коэффициент надежности, γ g 1,4 1,55 1,65 1,75

Расчетная длина сваи L расч определяется по формуле (8.22):

где f c р — среднее расчетное сопротивление грунта по боковой поверхности сваи, кПа. Оно определяется по формуле (8.23):

где f i — расчетное сопротивление i — го слоя грунта основания по боковой поверхности сваи, кПа;

h i — толщина слоя грунта, соприкасающегося с боковой поверхностью сваи, м.

Дата добавления: 2015-08-08 ; просмотров: 2871 ;

Источник

Строй-справка.ру

Отопление, водоснабжение, канализация

Общие положения. Расчет свайных фундаментов и их оснований выполняют по двум группам предельных состояний.

По первой группе предельных состояний расчет производят из условия обеспечения несущей способности ростверка, свай и грунта свайных фундаментов. Несущую способность грунта свайного фундамента проверяют по формуле (10.2). Если в фундаменте имеется несколько свай, то учитывают их количество.

По второй группе предельных состояний расчет выполняют только для фундаментов из висячих свай и свай-оболочек по условию (4.6), ограничивающему развитие значительных деформаций. Свайные фундаменты, состоящие из свай-стоек, одиночные висячие сваи, доспринимающие вне кустов вдавливающие или выдергивающие нагрузки, а также свайные кусты, работающие на выдергивающие нагрузки, рассчитывать по деформациям не требуется.

Рис. 10.5. Схемы передачи давления на грунт основания за счет сопротивления грунта по боковой поверхности и под нижним концом сваи

Последовательно суммируясь по высоте висячей сваи, силы трения вместе с усилием, возникающим под нижним концом сваи, передаются на грунты основания, находящиеся ниже плоскости, проходящей через ее острие. В расчетной схеме принимается, что вокруг сваи образуется напряженный массив грунта, ограниченный по боковой поверхности усеченным конусом или пирамидой в зависимости от формы поперечного сечения сваи, а под нижним концом сваи — выпуклой криволинейной поверхностью (рис. Ю.5, с).

При расположении свай трения в кусте эпюры реактивных давлений в плоскости нижних концов свай пересекаются (рис. 10.5, б) и вследствие большего загружения грунта происходит большая осадка свайного куста по сравнению с осадкой одиночной сваи.

Если деформативность сваи в кусте возрастает по сравнению с Деформативностью одиночной сваи, что отрицательно сказывается на работе свайного фундамента, то несущая способность сваи в кусте будет выше, чем несущая способность одиночной сваи, Что оказывает положительное влияние на эксплуатацию свайного фундамента. Последний факт объясняется увеличением сил трения по боковой поверхности свай, происходящим за счет уплотнения грунта вследствие забивки соседних свай, а также ограничения значительного развития зон пластических деформаций под нижним острием свай вследствие возникновения напряженного состояния от загружения соседних свай.

Проектирование свайных фундаментов включает в себя решение следующих вопросов: выбор глубины заложения ростверка, типа; и конструкции свай; определение несущей способности свай, назначение требуемого количества свай в фундаменте; конструирование фундамента; расчет ростверка; определение усилий, действующих на наиболее нагруженные сваи, и их сравнение с предельно до-1 пустимыми по грунту и материалу; расчет деформаций фундаментов и их сравнение с предельно допустимыми.

При проработке этих вопросов, исходя из наиболее экономичного и рационального решения, которое может быть получено на основе вариантного и оптимального проектирования с применением ЭВМ.

Глубину заложения подошвы ростверка назначают в соответствии с конструктивными и эксплуатационными особенностями зданий и сооружений и климатическими условиями района строительства. Как правило, подошву ростверка закладывают на глубине большей, чем глубина подвалов, приямков и коммуникаций, а также ниже глубины сезонного промерзания в пучинистоопасных грунтах. В некоторых случаях ростверк располагают в пределах зоны пучения, при этом между ростверком и грунтом создают воздушный зазор, исключая тем самым воздействие нормальных сил морозного пучения на подошву ростверка. Однако в данном случае следует учитывать касательные силы морозного пучения, действующие на ростверк и сваи. Для получения наиболее экономичного решения подошву ростверка необходимо располагать как можно выше, сводя к минимуму объем земляных работ.

Тип и конструкцию свай назначают, исходя из особенностей инженерно-геологических данных грунтов основания на строительной площадке, а также применяемого оборудования при устройстве фундаментов. В условиях современного строительства наиболее целесообразное решение удается получить при использовании забивных свай. Однако в некоторых случаях при необходимости применения свай повышенной несущей способности устраивают фундаменты из набивных свай, в том числе и с уширенной пятой.

Требуемое количество свай в фундаменте определяют на основании результатов расчета на центральное или внецентренное действие внешней нагрузки после предварительной оценки несущей способности одиночной сваи.

Определив необходимое количество свай в фундаменте, назначают его конструкцию, размещая сваи рядами или в шахматном порядке, при этом расстояние между сваями принимают равным d, где d — диаметр круглой или сторона квадратной сваи, разместив сваи, конструируют ростверк, который обычно выполняют из монолитного или сборного железобетона. Ростверк рассчитывают на продавливание сваями и опирающимися конструкциями здания (колоннами, стенками и т. д.) в соответствии с требованиями норм проектирования железобетонных конструкций, а также производят расчет ростверка на изгиб.

Высоту ростверка и его армирование назначают на основании результатов расчета, при этом по конструктивным соображениям его высота должна быть равна Ао+0,25 м, но не менее 0,3 м (Л0 — высота заделки сваи в ростверке).

Соединение свай с ростверком может быть свободным или жестким. Свободное закрепление сваи применяют, если сваи работают в основном на сжатие, когда же они воспринимают значительные горизонтальные или выдергивающие нагрузки, используют жесткое закрепление головы сваи в ростверке. При свободном соединении сваи заделывают в ростверк на высоту 5… 10 см, при жестком — верхняя часть головы сваи разбивается и обнаженная арматура замоноличивается в ростверк, при этом целая часть головы сваи заделывается в ростверк также на глубину 5…10 см. Жесткое соединение иногда получают за счет замоноличивания целой головы сваи в ростверк на необходимую глубину.

Расстояние от оси крайнего ряда свай до края ростверка чаще всего принимают равным размеру поперечного сечения сваи. При жестком соединении это расстояние дополнительно уточняется по результатам расчета заделки свай.

По завершении конструирования производят расчет свайного фундамента, в частности уточняют усилия, действующие на сваи, и рассчитывают деформации. При необходимости в конструкцию фундамента вносят необходимые корректировки относительно количества свай, изменения конструкции ростверка и расчет повторяют.

Расчет центрально нагруженных свайных фундаментов. После назначения глубины заложения подошвы ростверка свайного фундамента, в котором равнодействующая внешних нагрузок проходит через его центр тяжести, расчет начинают с выбора типа свай, для которой с помощью формул (10.1), (10.3) и (10.6) определяют несущую способность по грунту или материалу в зависимости от особенностей напластования грунтов на строительной площадке, материала и конструкции сваи. В качестве расчетного принимают наименьшее значение несущей способности.

Число свай в фундаменте определяют, исходя из предположения, что ростверк обеспечивает равномерную передачу нагрузки на все сваи, расположенные в кусте или свайном ряду.

Фундамент считается правильно рассчитанным, если удовлетворяется условие (10.2), характеризующее несущую способность из основного условия первой группы предельных состояний. Если это условие не выполняется, то необходимо выбрать другой тип сваи, имеющий более высокую несущую способность, и повторить расчет.

Для свайных фундаментов из висячих сваи необходимо еще и выполнение основного требования расчета по второй группе предельных состояний (по деформациям), для фундаментов из свай стоек этот вид расчета не требуется.

Расчет осадки свайного фундамента из висячих свай производят как для условного фундамента на естественном основании, контур которого ограничен размерами ростверка, свай и некоторым объемом грунта в межсвайном пространстве (рис. 10.6, а).

В расчетной схеме принимается, что нагрузка на грунт передается по подошве условного фундамента и воспринимается слоем грунта, расположенным ниже плоскости острия свай. Реактивные напряжения по подошве условного фундамента считаются равномерно распределенными.

Размеры условного фундамента определяют следующим образом.

Рис. 10.6. Схемы условных фундаментов для расчета по второй группе предельных состояний

Расчетное сопротивление грунта основания, входящее в выражение (10.38), определяют по формуле (4.10) в соответствии с требованиями второй группы предельных состояний для условного фундамента, показанного на рис. 10.6.

Расчет выецентреыно нагруженных свайных фундаментов. Внецен-тренно нагруженным считают свайный фундамент, в котором точка приложения равнодействующей внешних нагрузок не совпадает с Центром тяжести поперечных сечений свай в кусте.

При небольших эксцентриситетах, когда краевые напряжения в уровне подошвы ростверка подчиняются соотношению «r^^ 0;p^R:
если условия выполняются, то переход к п. 24;
если нет, то увеличение количества свай и переход к п. 13.
29. Вычисление крена свайного фундамента по формуле (6.22).
30. Проверка условия /

Источник

Читайте также:  Came gard 6000 фундамент
Оцените статью