- 5.5.3. Определение основных размеров фундаментов (ч. 3)
- Б. ВНЕЦЕНТРЕННО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ
- Вопрос № 23. Распределение контактных давлений по подошве фундаментов.
- Распределение напряжений по подошве фундаментов
- 24 Распределение давлений по подошве фундамента опирающихся на грунт( контактная задача)
- 25. Определение напряжений от собственного веса грунта
5.5.3. Определение основных размеров фундаментов (ч. 3)
Б. ВНЕЦЕНТРЕННО НАГРУЖЕННЫЕ ФУНДАМЕНТЫ
Размеры внецентренно нагруженных фундаментов определяются исходя из условий:
где р — среднее давление под подошвой фундамента от нагрузок для расчета оснований по деформациям; pmax — максимальное краевое давление под подошвой фундамента; р c max — то же, в угловой точке при действии моментов сил в двух направлениях; R — расчетное сопротивление грунта основания.
Максимальное и минимальное давления под краем фундамента мелкого заложения при действии момента сил относительно одной из главных осей инерции площади подошвы определяется по формуле
где N — суммарная вертикальная нагрузка на основание, включая вес фундамента и грунта на его обрезах, кН; A — площадь подошвы фундамента, м 2 ; Мх — момент сил относительно центра подошвы фундамента, кН·м; y — расстояние от главной оси инерции, перпендикулярной плоскости действия момента сил, до наиболее удаленных точек подошвы фундамента, м; Ix — момент инерции площади подошвы фундамента относительно той же оси, м 4 .
Для прямоугольных фундаментов формула (5.53) приводится к виду
где Wx — момент сопротивления подошвы, м 3 ; ex = Mx/N — эксцентриситет равнодействующей вертикальной нагрузки относительно центра подошвы фундамента, м; l — размер подошвы фундамента в направлении действия момента, м.
При действии моментов сил относительно обеих главных осей инерции давления в угловых точках подошвы фундамента определяется по формуле
или для прямоугольной подошвы
где Мх, My, Iх, Iy, ex, ey, x, у — моменты сил, моменты инерции подошвы эксцентриситеты и координаты рассматриваемой точки относительно соответствующих осей; l и b — размеры подошвы фундамента.
Условия (5.50)—(5.52) обычно проверяются для двух сочетаний нагрузок, соответствующих максимальным значениям нормальной силы или момента.
Относительный эксцентриситет вертикальной нагрузки на фундамент ε = е/l рекомендуется ограничивать следующими значениями:
εu = 1/10 — для фундаментов под колонны производственных зданий с мостовыми кранами грузоподъемностью 75 т и выше и открытых крановых эстакад с кранами грузоподъемностью более 15 т, для высоких сооружений (трубы, здания башенного типа и т.п.), а также во всех случаях, когда расчетное сопротивление грунтов основания R εu = 1/6 — для остальных производственных зданий с мостовыми кранами и открытых крановых эстакад;
εu = 1/4 — для бескрановых зданий, а также производственных зданий с подвесным крановым оборудованием.
Форма эпюры контактных давлений под подошвой фундамента зависит от относительного эксцентриситета (рис. 5.25): при ε ε = 1/10, соотношение краевых давлений pmin/pmax = 0,25), при ε = 1/6 — треугольная с нулевой ординатой у менее загруженной грани подошвы, при ε > 1/6 — треугольная с нулевой ординатой в пределах подошвы, т.е. при этом происходит частичный отрыв подошвы.
В последнем случае максимальное краевое давление определяется по формуле
где b — ширина подошвы фундамента; l0 = l /2 – e — длина зоны отрыва подошвы (при ε = 1/4, l0 = 1,4).
Следует отметить, что при отрыве подошвы крен фундамента нелинейно зависит от момента.
Распределение давлений по подошве фундаментов, имеющих относительное заглубление λ = d/l > 1, рекомендуется находить с учетом бокового отпора грунта, расположенного выше подошвы фундамента. При этом допускается применять расчетную схему основания, характеризуемую коэффициентом постели (коэффициентом жесткости). В этом случае краевые давления под подошвой вычисляются по формуле
где id — крен заглубленного фундамента; ci — коэффициент неравномерного сжатия.
Пример 5.11. Определить размеры фундамента для здания гибкой конструктивной схемы без подвала, если вертикальная нагрузка на верхний обрез фундамента N = 10 МН, момент M = 8 МН·м, глубина заложения d = 2 м. Грунт — песок средней крупности со следующими характеристиками, полученными по испытаниям: е = 0,52; φII = 37°; cII = 4 кПа; γ = 19,2 кН/м 3 . Предельное значение относительного эксцентриситета εu = е/l = 1/6.
Решение. По табл. 5.13 R0 = 500 кПа. Предварительные размеры подошвы фундамента определим исходя из требуемой площади:
м 2 .
Принимаем b · l = 4,2 · 5,4 м ( A = 22,68 м 2 ).
Расчетное сопротивление грунта по формуле (5.29) R = 752 кПа. Максимальное давление под подошвой
кПа R = 900 кПа.
Эксцентриситет вертикальной нагрузки
м,
Таким образом, принятые размеры фундамента удовлетворяют условиям, ограничивающим краевое давление и относительный эксцентриситет нагрузки.
Сорочан Е.А. Основания, фундаменты и подземные сооружения
Источник
Вопрос № 23. Распределение контактных давлений по подошве фундаментов.
Напряжения, возникающие по подошве фундамента, являются силами взаимодействия между сооружением и его основанием. С одной стороны их можно рассматривать как нагрузку, передающуюся от сооружения на основание, и тогда закон изменения этой нагрузки имеет существенное значение для расчета напряжений и деформаций в основании. С другой стороны их рассматривают как реактивные силы, представляющие собой воздействие основания на сооружение. В этом случае закон распределения реактивных сил имеет большое практическое значение при расчете фундаментов по прочности и деформациям. В связи с этим важно оценить, как жесткость фундамента сказывается на распределении контактных давлений и давлений в массиве грунта.
Если фундамент абсолютно жесткий, то все точки его площади подошвы будут иметь при центральной нагрузке одну и ту же вертикальную деформацию.
Характер эпюры контактных давлений для жестких круглого и полосового штампов будет иметь вид, приведенный на схеме.
Концентрация напряжений у краев штампа в целом мало
мало влияет на полную осад ку, так как в массиве грунта
распространяется лишь на небольшую глубину от подош-
вы штампа. На схеме пунктиром показана эпюра с учетом
реальных свойств грунта (ползучесть скелета, изменение
Рxy модуля деформации с глубиной.
При практических расчетах допускается пренебрегать
концентрацией напряжений у краев штампа и выполнять расчет на основе формул центрального и внецентренного сжатия. Вид эпюр контактных давлений при центральном и внецентренном загружении жесткого штампа:
Действующие по подошве штампа давления определяются по формулам:
;
±
, где
А, Iх– площади и момент инерции площади подошвы штампа.
При определении эпюры контактного давления штампа необходимо учитывать его изгибную деформцию. В зависимости от жесткости распределительной конструкции контактное давление может иметь очертание от седлообразного до параболического.
Для гибких фундаментных балок гибкость учитывается по формуле: |
l l
Помимо гибкости на форму эпюры контактных давлений влияют глубина заложения штампа, величина внешней нагрузки, обуславливающей развитие пластических деформаций в грунте, а следовательно, и от прочностных свойств грунта.
Вопрос № 24. Механические модели грунтов для определения деформации грунтов.
Основная задача при определении деформаций грунтов заключается в расчетах напряженно-деформируемого состояния грунтов, оценка прочности и устойчивости. Для решения этой задачи возникает необходимость разработки такой модели грунта, которая учитывала бы основные особенности его деформирования. Для этой цели могут быть использованы:
1.Модель дискретной среды. В этом случае делается попытка отобразить в расчетной модели физические особенности грунта как дискретного материала, представляя его в виде совокупности отдельных частиц. Но это направление не привело к созданию законченной теории деформирования грунта.
2.Современная механик грунтов основывается на представлении о грунте как о сплошной однородной среде. Модель сплошной среды потребовала введения понятий, упрощающих реальное строение грунта. Во-первых, это элементарный объем грунта. В объеме грунта линейные размеры которого во много раз превышают размеры частиц. Во-вторых, применение механики сплошной среды для расчета деформаций в массиве грунта справедливо только тогда, когда размеры массива и площадок, через которые передается нагрузка, больше размеров элементарного объема грунта.
Другое упрощение реального строения грунта – представление его в виде изотропного тела, у которого свойства образцов, вырезанных по любому направлению, одинаковы. Это условие применимо не ко всем грунтам.
3.При проектировании ответственных сооружений используется модель двухком- понентного грунта. Модель грунтовой массы, когда все поры практически заполнены водой и содержание газа в грунте относительно невелико.
4.Модель трехкомпонентного грунта – когда в грунте присутствуют твердые частицы, жидкость и газы. Здесь принимается во внимание различность деформирования каждого компонента, взаимодействие их между собой и изменение содержания каждого компонента в объеме грунта в процессе деформации.
Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.
Источник
Распределение напряжений по подошве фундаментов
Фундамент, воспринимая нагрузку от сооружения, распределяет приложенное к нему давление по поверхности грунта основания. В плоскости его подошвы возникают нормальные и касательные напряжения, которые называют контактными. При вертикальной, нагрузке на основание наибольшее значение имеют нормальные напряжения. Роль касательных напряжений здесь невелика, и ими, как правило, пренебрегают.
Характер распределения нормальных напряжений по подошве фундамента зависит от его жесткости, формы и размеров в плане, а также от свойств грунта основания и степени развития в нем областей предельного равновесия.
В случае абсолютно гибкого фундамента возникающие по его подошве напряжения имеют такой же характер распределения, как и приложенная нагрузка. Однако осадка этого фундамента даже при равномерном давлении на основание будет происходить неравномерно. Она, как это нетрудно убедиться из рассмотрения напряженного состояния в толще основания, будет в средней части фундамента больше, чем у его краев. Такой фундамент, точки подошвы которого беспрепятственно следуют за деформацией грунта, приобретает криволинейную форму очертания, обращенную выпуклостью вниз.
В действительности фундаменты, обладая достаточно большой жесткостью, получают при ocaдкe на сжимаемых грунтах весьма малое искривление, влиянием которого по сравнению с деформациями грунта можно пренебречь. Следовательно, осадку жесткого фундамента при центральной нагрузке на основание можно считать практически равномерной, одинаковой для всех точек его подошвы. При внецентренном нагружении осадка будет сопровождаться еще и некоторым креном в сторону действия момента.
В сравнении с гибким жесткий фундамент как бы выравнивает осадку грунта основания, которая становится меньше в средней его части и увеличивается у краев. Это вызывает соответствующие изменения и в распределении нормальных напряжений по его подошве, которые в пределах средней части жесткого фундамента снижаются, а у его краев они возрастают.
Источник
24 Распределение давлений по подошве фундамента опирающихся на грунт( контактная задача)
Грунты основания испытывают два вида давления:
бытовое sб, возникающее в грунтах под влиянием веса вышележащих слоев;
дополнительное s, возникающее под влиянием нагрузок от фундаментов.
Бытовое давление увеличивается с увеличением глубины залегания и определяется по формуле:
где z — глубина точки в которой определяется бытовое давление.
Дополнительное же давление, как показали исследования, уменьшается по мере удаления от подошвы фундаментов вглубь грунтов. Схема распределения давления в толще грунтов (по оси фундамента) показана на рис
Давление от фундаментов s непосредственно под подошвой передается неравномерно. Однако при большой жесткости фундамента когда его собственные деформации несоизмеримо малы по сравнению с осадкой основания можно не учитывать криволинейного характера эпюры реактивных давлений, так как это оказывает малое влияние на размеры фундамента, но очень усложняет расчет. Поэтому в строительной практике принято для упрощения пренебрегать упругостью основания и считать, что давления от фундаментов на грунты основания распределяются по линейному закону. При этом условно принимают, что эпюра давления непосредственно под подошвой фундамента в зависимости от величины эксцентриситета е имеет при центральном сжатии форму прямоугольника (рис. а и б), при внецентренном — форму трапеции (рис в) или треугольника (рис. г и д).
Контактная задача- это решение вопросов о распределении давлений по подошве сооружений, опирающихся на грунт. Если известно реактивное давление по подошве фундамента, которое обычно и называют контактным, то, приложив к подошве фундамента его обратную величину находят величину расчетных изгибающих моментов и перерезывающих сил, применяя известные уравнения статики.
25. Определение напряжений от собственного веса грунта
Напряжения от собственного веса грунта определяются на основании следующих упрощающих гипотез:
напряженным состоянием грунта при действии его собственного веса является осесимметричное компрессионное сжатие;
вертикальные напряжения в грунте определяются суммированием напряжений от веса элементарных слоев грунта;
грунт, находящийся ниже уровня грунтовых вод, испытывает взвешивающее действие воды;
слой грунта, находящийся ниже водоносного слоя, называется водоупором и испытывает на своей поверхности гидростатическое давление водяного столба.
Определяем напряжение от собственного веса грунта (природного или бытового) по формуле: σtg = ,
*
=
= МПа, гдеn-число слоев грунта в пределах глубины z;
– удельный вес грунта
слоя, кН/м 3 ;
– толщина или мощность этого слоя в м;
Удельный вес водопроницаемых грунтов, залегающих ниже уровня грунтовых вод, принимается с учетом взвешивающего действия воды, согласно выражению
sb=
s –
w)/(1+e), где
w – удельный вес воды;
w = 10 кН/м 3 ;
s – удельный вес частиц грунта, е – коэффициент пористости.
Источник