- Расчет свайного фундамента с ростверком
- Расчет буронабивной сваи
- Сбор исходных данных для расчета
- Справочная информация
- Порядок расчета
- Армирование буронабивной сваи
- Расчет ростверка
- Армирование ростверка
- Пример расчета свайного буронабивного фундамента
- Расчет свай
- Расчет и устройство буронабивного фундамента своими руками с монолитным ростверком
- Технология установки свай
- Частичная и полная опалубочная конструкция
- Укладка бетона
- Применение буронабивной технологии в частном строительстве
- Недостатки и довод в пользу буронабивной технологии
- Расчет и место установки свай
- Расчет несущей способности
Расчет свайного фундамента с ростверком
Фундаменты являются крайне ответственной частью любого здания. Появятся ли трещины на стенах, будет ли дом проседать со временем — все это зависит от того, насколько грамотно подобраны размеры и материалы для опорной части. Чтобы правильно запроектировать буронабивной свайно-ростверковый фундамент, потребуется выполнить его расчет по несущей способности.
Расчет буронабивной сваи
Несущая способность фундамента — это нагрузка, которую он сможет выдержать без разрушений, деформаций или других неприятных процессов. При конструировании буронабивного основания потребуется выяснить следующую информацию:
- сечение элемента;
- длина;
- расстояние между отдельными сваями.
Расчет свай по несущей способности часто выполняется с заранее известным сечением фундамента. Эта характеристика зависит от имеющейся в наличии техники. В качестве исходных данных необходимо подготовить:
- состав грунтов на участке;
- сбор нагрузок на опору дома.
Сбор исходных данных для расчета
Перед тем, как рассчитать буронабивной свайно-ростверковый фундамент, потребуется изучить свойства почвы на участке строительства. Выполнить это можно двумя методами: отрывка шурфов (глубоких ям) или бурение ручным инструментом. Изучение почвы проводят чуть глубже предполагаемой подошвы (примерно на 50 см). При выполнении работ необходимо анализировать каждый плат грунта, определять его тип.
Чтобы получить представление о том, какие бывают грунты, как правильно их различать, рекомендуется прочитать ГОСТ «Грунты. Классификация». Особого внимания заслуживает приложение А, в котором даны основные определения.
Следующий этап расчета буронабивной сваи и ростверка — сбор нагрузок. Его проще выполнять в тоннах. Для его выполнения потребуется знать объемы строительных конструкций и плотности материалов, из которых они изготовлены. Чтобы подсчитать массу здания нужно вспомнить простую формулу из школьной физики: «Массу мы легко найдем, умножив плотность на объем». В сбор нагрузок на фундаменты включают:
- собственную массу опорной части (назначают ориентировочно);
- массу перекрытий, стен, перегородок (проемы из общего объема лучше не вычитать);
- полезную нагрузку на перекрытия (для жилых зданий эта нагрузка назначается 150 кг/м 2 пола, берется на каждом этаже);
- массу кровли;
- снеговую нагрузку (зависит от климатического района строительства, расчет выполняется по СП «Нагрузки и воздействия»).
Совет! Для упрощения задачи снеговую нагрузку можно назначать по специальной карте или таблице. То есть без выполнения сложного расчета.
Найденную массу каждого элемента нужно умножить на коэффициент надежности по нагрузке. Величина этого коэффициента зависит от материала, из которого изготовлена конструкция. Для снеговой и полезной нагрузок коэффициенты постоянны и составляют 1,4 и 1,2 соответственно.
Тип строительной конструкции | Коэффициент надежности по СП «Нагрузки и воздействия» |
металлические | 1,05 |
деревянные | 1,1 |
железобетонные и армокаменные (например, кирпичные), изготовленные на заводе | 1,2 |
железобетонные монолитные | 1,3 |
Более подробную информацию о сборе нагрузок на фундаменты можно найти в статье «Сбор нагрузок на фундамент — пример».
Справочная информация
Чтобы правильно рассчитать буронабивной свайный фундамент потребуется знать прочностные характеристики грунта. Информацию об этом можно найти в ВСН 5-71. Для удобства далее представлены адаптированные таблицы из этого документа отдельно по каждому типу почв.
Таблица 1. Несущая способность глинистых грунтов в зависимости от консистенции и пористости на опорном участке сваи, т/м 2 .
Таблица 2. Несущая способность глинистых грунтов по длине буронабивной сваи, т/м 2 .
Таблица 3. Несущая способность песчаных грунтов, т/м 2 .
Таблица 4. Несущая способность крупнообломочных грунтов, т/м 2 .
Чтобы выполнить расчет сечения и расстояния между сваями необходимо выбрать одно или два (для глин) значения из приведенных в таблице в зависимости от результатов отрывки шурфов или бурения.
Порядок расчета
После внимательного изучения всех предыдущих пунктов для расчета свайно-ростверкового фундамента должна иметься следующая информация:
- масса дома в тоннах и нагрузка на каждый погонный метр ростверка;
- несущая способность грунта в тоннах на м 2 .
Чтобы найти нагрузку на погонный метр фундамента, нужно массу дома поделить на суммарную длину ростверка.
Несущая способность одной сваи находится по формуле:
P = (0,7*R*S) + (u*0,8*fin*li), где
P — несущая способность каждой сваи фундамента;
R — прочность грунта, найденная по табл. 1, 3 или 4;
S — площадь сечения сваи на конце (формула для нахождения приведена далее);
u — периметр сваи;
fin — сопротивление почвы на боковой поверхности буронабивного свайного фундамента, найденное по табл. 2;
li — толщина слоя грунта, который оказывает сопротивление боковой поверхности;
0,7 и 0,8 — коэффициенты, которые учитывают однородность грунта и условия работы сваи.
Для сваи круглого сечения площадь находится через диаметр или радиус: S = 3,14*D 2 /4 = 3,14*r 2 /2. Здесь D и r — это диаметр и радиус соответственно.
Чтобы рассчитать расстояние между элементами фундамента требуется воспользоваться следующей формулой:
l — расстояние между сваями буронабивного фундамента;
P — несущая способность одной сваи, найденная ранее;
Q -нагрузка на погонный метр фундамента (масса дома делить на длину ростверка).
Совет! Перед началом расчета необходимо ознакомиться с СП «Свайные фундаменты». Минимальный диаметр свайного основания при длине элемента менее 3 метров составляет 30 см. Чтобы найти наиболее рациональное решение рекомендуется рассмотреть 2-3 варианта геометрических размеров свай. Для каждого случая находят расстояние между опорами и оценивают затраты на строительство. Выбирают наиболее экономичный вариант.
Подробный расчет расстояния между сваями с рассмотрением нескольких примеров может занять много времени. Но здесь перед будущим владельцем дома стоит выбор, что экономить: время или деньги.
Армирование буронабивной сваи
Рабочая арматура располагается вертикально вдоль сваи. В качестве нее используют пруты класса А400 (Аlll) диаметром 10-16 мм. Поперечную обвязку изготавливают из гладкой арматуры А240 (Al) диаметром 6-8 мм. В каждой свае должно быть не менее четырех рабочих вертикальных прутка.
Расчет ростверка
Расчет ростверка свайного фундамента выполняется примерно так же, как и вычисления для ленточного типа опорной части дома. Чтобы рассчитать ширину ленты потребуется воспользоваться формулой:
B — необходимая ширина ростверка;
М — масса дома (за вычетом массы свай);
L — длина ростверка;
R — несущая способность грунта (слоя у поверхности).
Этот расчет подойдет для ленты, расположенной непосредственно на земле или с небольшим заглублением. Для висячего ростверка расчет будет более сложным, выполнять его самостоятельно проблематично.
Армирование ростверка
Подобрав ширину ростверка буронабивного фундамента, необходимо грамотно его армировать. Можно использовать требования к стальным стержням из СП «63.133301.2012».
В качестве материала для армирования выбирают пруты класса А400 (Alll). Максимально допустимый диаметр рабочих прутов — 40 мм. Минимальные значения приведены в таблице.
Вид арматуры | Диаметр прутов | |
Продольная (рабочее) | длина стороны ростверка меньше 3м | общее сечение всего армирования = 0,001*В*H, где B— ширина ростверка, а H — высота. По площади сечения диаметр находят с помощью сортамента арматуры. Количество стержней принимается четным (одинаковое число сверху и снизу). Диаметр назначают не менее 10 мм |
длина стороны ростверка больше 3м | то же, но диаметр назначают не менее 12 мм. | |
Поперечное (горизонтальное) | 6 мм | |
Вертикальное при высоте ростверка меньше 80 см | 6 мм | |
Вертикальное при высоте ростверка больше 80 см | 8 мм |
Пример расчета свайного буронабивного фундамента
Исходные данные для расчета:
- одноэтажный кирпичный дом с мансардой, толщина стены 380 мм;
- размеры в плане 7 на 9 метров, внутренних несущих стен нет (только перегородки), высота этажа 3 м;
- кровля стропильная мансардная с покрытием из металлочерепицы;
- грунты на участке — полутвердая глина с коэффициентом пористости 0,6, залегает на 3 м, R = 72 т/м2, fin = 3,5 т/м2 (взято значение для глубины 1 м).
Сбор нагрузок удобнее выполнять в табличной форме. Необходимо не забывать коэффициенты по надежности.
Нагрузка | Величина, кг |
Наружные кирпичные стены 380 мм | (9 м(длина)*2 шт + 7 м (ширина)*2 шт)*4,5м(высота на первом этаже + на мансарде)*0,38 м*1800 кг/м 3 (плотность кирпича)*1,2 (коэффициент) = 118200 кг |
Перегородки из гипсокартона без шумоизоляции высотой 2,7 м (от пола до потолка) | 30 м (длина на весь дом)*2,7 м (высота)*27,2 кг*1,2 = 2645 кг |
Железобетонные монолитные перекрытия толщиной 200 мм | 2шт (на 2 этажа) *7 м (ширина дома )*9 м (длина дома)*160 кг/м 2 (средняя масса перекрытия на кв. м) *1,3 = 26210 кг |
Кровля | 7 м*9 м*60 кг (масса кв. метра кровли из металлочерепицы) *1,2 (коэффициент надежности) /соs30ᵒ (угол наклона ската) = 5215 кг |
Полезная нагрузка на перекрытия (2 шт., пол первого и пол второго этажей) | 2 шт *7 м*9 м*150 кг/м 2 (нормативное значение для жилья) *1,2 = 22680 кг |
Снег (нормативное значение снеговой нагрузки взято для г. Москва) | 7м*9м*180 кг (нормативное значение) *1,4/cos30° = 13050 кг |
Ростверк предварительно принимаем шириной 0,4 м и высотой 0,5 м. Длина буронабивной сваи предварительно — 3 м, сечение диаметром 40 см, устанавливаются с шагом 1,5 м.
Количество свай = 32 м (L, длина ростверка)/1,5 м (шаг свай) +1 = 22 шт. (округляем до целых в меньшую сторону). S = 3,14*0,42/4 (формула площади через диаметр, см. ранее) = 0,126 м 2 .
Масса ростверка: 0,4м *0,5 м *32 м (длина) *2500 кг/м3 (плотность ж/б)* 1,3 (коэффициент) = 20800 кг.
Масса свай: 22 шт.*3 м *0,126 м2 *2500 кг/м 3 *1,3 = 27030 кг.
Суммарная масса всего дома = 235830 кг = 236 т.
Нагрузка на погонный метр = Q = 236 т/32 м = 7,36 т/м.
Расчет свай
Вариант расчета сваи 1.
Несущая способность одной сваи = P = (0,7*R*S) + (u*0,8*fin*li) = (0,7*72 т/м2*0,126 м2) + (1,26 м*0,8 *3,5 т/м 2 *3 м (длина сваи)) = 16,93 т.
u = 3,14*D = 3,14*0,4 = 1,26 м, где D — диаметр сваи.
Расстояние между сваями = l = P/Q = (16,93 т)/(7,36 т/м) = 2,3 м. Шаг достаточно большой, можно уменьшить длину сваи до 2м.
Вариант расчета сваи 2.
В расчетах для предыдущего случая требуется заменить всего одно значение. Несущая способность одной сваи = P = (0,7*R*S) + (u*0,8*fin*li) = (0,7*72 т/м 2 *0,126 м2) + (1,26 м*0,8 *3,5 т/м 2 *2 м (длина сваи)) = 13,41 т.
Расстояние между сваями = l = P/Q = (13,41 т)/(7,36 т/м) = 1,82 м.
Вариант расчета сваи 3.
Рассмотрим еще один вариант с диаметром сваи 50 см и длиной 2 м.
S = 3,14*0,52/4 = 0,196 м 2 ;
u = 3,14*D = 3,14*0,5 = 1,57 м.
Максимальное нагружение одной сваи = P = (0,7*72 т/м2*0,196 м 2 ) + (1,57 м*0,8 *3,5 т/м 2 *2 м (длина сваи)) = 18,67 т.
Расстояние между опорами = l = P/Q = (18,67 т)/(7,36 т/м) = 2,54 м.
Рекомендуется выбирать шаг свай приближенный к 2 м. В рассматриваемом случае оптимальным станет 2 вариант с фундаментами небольшого сечения и длины. Для более точного результата можно рассчитать расход материала во всех случаях и сравнить его.
Поскольку планируется строительство тяжелого кирпичного дома, в качестве рабочего армирования назначаем пруты побольше, диаметром 14 мм. Для изготовления поперечных хомутов используется арматура 8 мм.
Расчет железобетонного ростверка
Из массы дома, использованной при предыдущих вычислениях, необходимо вычесть массу свай. Получаем нагрузку в 208800 кг = 209 т.
Ширина ростверка = В = М/L*R = 209 т/ (32 м*72 т/м 2 ) = 0,1 м. Требуемая ширина ростверка меньше ширины стены здания. Назначаем величину конструктивно 0,4 м. Свесы стены с ростверка не должны быть слишком большими, максимальное значение 0,04м. Высоту ростверка также выбираем конструктивно 0,5 м. Остается назначить армирование:
- Рабочее принимается 0,001*0,6 м *0,5 м = 0,0003 м2 = 3 см 2 . По сортаменту подходят 4 стержня диаметром 10 мм, но по требованиям СП минимальное значение при длине стороны ростверка 6 м — 12 мм. Принимаем 4 прута диаметром 12 мм (два сверху и два снизу).
- Поперечное армирование диаметром 6 мм.
- Вертикальное армирование диаметром 6 мм (поскольку высота ленты менее 0,8 м).
Выполнение расчета позволит оптимально использовать материалы и рабочую силу на строительной площадке.
Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.
Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.
Источник
Расчет и устройство буронабивного фундамента своими руками с монолитным ростверком
Буронабивные сваи по степени надежности практически ничем не уступают другим опорам при строительстве домов малой этажности. Это один из наиболее надежных методов устройства фундаментов на почвах, подвергающихся сезонному пучению. Получаемые конструкции гарантируют целостность и прочность основания и, соответственно, стен возводимого дома.
Возведение такого основания своими руками целесообразно применять в таких случаях, когда невозможно возвести другие виды фундаментов. Его логично использовать, если несжимаемый слой расположен очень глубоко, например, при выполнении строительных работ на заболоченных участках или прочих ослабленных грунтах.
Затраты на буронабивной фундамент с ростверком под кирпичный дом можно считать оправданными, когда строительство ведется на местности со значительным уклоном. Также специалисты рекомендуют применение этого вида основания для сооружения облегченных деревянных или каркасных зданий.
Технология установки свай
Устройство фундамента этого вида включает сверление скважин и их дальнейшую заливку бетонной смесью. Для высверливания применяются ручные, электро/бензиновые буры. Менее трудоемкий этап подготовки скважин – привлечение специальной техники для бурения.
Процесс засверливания скважин под сваи можно выполнить и своими руками с помощью ручного мотобура, установив подходящий диаметр наконечника.
Прочность каждой сваи увеличивают каркасом из арматуры: внутрь пробуренных отверстий опускают 3−4 армирующих элемента с сечением 10−12 мм.
Специалисты советуют выполнять горизонтальную перевязку элементов каркаса на случай эксцентричных нагрузок или сдвигающих усилий. Для перевязки рекомендуется применять гладкую арматуру с сечением 6−8 мм, и шагом приблизительно в 1 метр.
В этом случае, армирующие стержни будут выполнять функцию связки сваи и железобетонного ростверка. То есть, находящаяся над землей и заглубленная части фундамента будут объединены в единое целое. При устройстве ростверка стержни должны выступать из оголовка сваи.
Помимо перечисленного выше, каркас из арматуры не допустит возможные разрывы и деформации из-за влияния морозного пучения.
Частичная и полная опалубочная конструкция
Далее, выполняется установка опалубки в пробуренную скважину. Но, ее функцию может выполнять сам грунт, если он достаточно плотный и не обсыпается. Тогда выставляется только верхняя часть опалубочной конструкции для выполнения оголовков свай.
Итак, опалубкой может быть сам грунт, пробуренный наконечником в 200−250 мм на 90 и до 150 мм в глубину, с принятым в расчет состоянием почвы. Если же вследствие особенностей почвы ее приходится раскапывать, то в качестве опалубки можно брать металлические или асбестоцементные трубы соответствующего сечения. При устройстве буронабивного основания своими руками, можно свернуть рубероид, превратив его в подобие трубы.
Для того чтобы не допустить выдавливания буронабивного фундамента во время сезонного вспучивания, его оголовник, который располагается на полметра (и более) ниже уровня земли, необходимо заизолировать чехлом из кровельной стали из оцинковки, несколькими слоями пленки или толем.
Этот чехол специалисты называют «рубашкой», которую советуют делать на всю глубину сваи. Аргументация выполнения этого действия следующая. Приподнимающийся грунт «скользит по установленной защите или приподнимает его, оставляя само основание неподвижным». Помимо этого, «рубашка» не дает цементному молоку стечь в грунт, соответственно, не снижаются прочностные характеристики бетона.
При сооружении каркаса нужно принять меры, которые не допустят его сдвига и соприкосновения арматуры с почвой. Для этого можно своими руками установить временные деревянные подпорки или клинья. Их можно будет удалять по мере заполнения скважины.
Перед укладкой бетона требуется выполнить расчет отметки нижнего края ленточного фундамента, или, говоря по-другому, ростверка. Для этого потребуется использование нивелира или строительного гидравлического уровня.
Укладка бетона
После того как процесс бурения завершен, сооружена опалубка и каркас, можно выполнять заливку бетонной смеси. Бетон укладывается слоями с поэтапным уплотнением – штыковкой. Для этого подходит только «тяжелый» раствор. Этот термин подразумевает использование следующих «тяжелых» заполнителей:
- кварцевый песок;
- щебень/гравий (прочных пород).
Бетонирование каждой буронабивной сваи выполняется непрерывно. Это означает, что временной промежуток между укладкой каждого слоя не должен превышать 1 часа. Процесс полного схватывания бетона завершается по истечении 28 дней, после чего можно нагружать полученную фундаментную конструкцию.
Применение буронабивной технологии в частном строительстве
Технология возведения буронабивных конструкций проста и подходит для устройства фундамента своими руками. Строительная индустрия имеет в своем распоряжении разнообразные виды буров под скважины с различным сечением. Их применение помогает выполнить бурение скважин до нескольких метров глубиной.
Диаметры свай также могут быть разные: от 15 до 40 см. Так называемая технология ТИСЭ предполагает использование специального бура, при помощи которого можно бурить скважины 20 см в диаметре с расширением в основании (до 40 или 60 см). Таким образом, достигается увеличение площади опоры, не позволяющей пучению вытолкнуть сваю.
Существуют также специальные механизмы (ямобуры, мотобуры и прочие) которые могут существенно облегчить выполнение этапа установки опор.
Недостатки и довод в пользу буронабивной технологии
Считается признанным факт, что основным недостатком этой технологии является невозможность сделать точный расчет, когда именно достигается необходимый несжимаемый слой, способный выдержать давление сваи.
Для того чтобы избежать досадных ошибок, скважины бурят до 1,5−2 метра, то есть, достигая точки ниже уровня промерзания, где почва имеет более плотную структуру. При низком показателе УГВ расчет несущей способности грунта соответствует 6 кг на 1 см².
Для индивидуальных застройщиков эта технология выглядит довольно привлекательно. В отличие от ленточного или монолитного типа, где укладывается сразу весь требуемый объем бетонного раствора, сваи можно укладывать поэтапно. При заливке одной опоры объем укладываемого бетона несоизмеримо меньше, чем при монолитном, что облегчает процесс подготовки и заливки. Поэтому выполнение этих работ можно сделать своими руками.
Расчет и место установки свай
На этапе разработки проекта производится расчет точного количества опор и их расположение. Опорные элементы устанавливают рядами по разметке стен дома, в его углах, в местах пересечениях стен и между таковыми.
Расчет расстояния между опорами определяется общим весом возводимой конструкции: чем она тяжелее, тем большее количество элементов и с меньшим расстоянием между собой они будут устанавливаться.
При этом учитывается минимально допустимое расстояние – не менее трех диаметров сваи. Причина этому такова, что если опоры располагать чаще, их несущая способность снижается.
Примерный расчет при диаметре свайной опоры в 40 см, допустимое расстояние будет равно 120 см (40х3). В процессе выполнения работ по установке своими руками, следует проверять уровень оголовков – они все должны выступать на равную величину. В дальнейшем, на них будет возводиться сам дом.
Расчет несущей способности
Чтобы подсчитать требующееся количество опор, нужны два показателя − вес конструкции и несущая способность отдельно взятого элемента. Расчет прочности одной свайной опоры зависит от марки используемого бетонного раствора. Так, при изготовлении сваи из М 100, она выдерживает 100 кг на 1 см². При сечении 20 х 20 см, площадь будет равна 400 см², а опора сможет выдержать до 40 т.
Таким образом, несущая способность грунта намного меньше, чем у самой сваи. Согласно этому, расчет точного количества элементов и несущей способности всей свайно-ростверковой конструкции невозможен без учета прочности грунта. Ранее был приведен расчет для заложения опоры ниже уровня промерзания. Но при изменении сечения, совершенно другой будет площадь и несущая способность свайно-ростверкового основания.
Ростверк – объединяющий состав свайно-ростверковой конструкции, повышающий устойчивость основания. При выборе устройства свайного фундамента без него, потребуется расчет, который сможет гарантировать, что все элементы устанавливаются на достаточную глубину. Тогда можно быть уверенным, что конструкция не просядет, и не будет «выдавлена» влиянием сил морозного пучения.
Источник