Scad армирование столбчатого фундамента

Расчет отдельно стоящих фундаментов в SCAD office

Инженер, столкнувшийся с расчетом каркаса здания, одним из несущих элементов которого является колонна, придет к необходимости расчета отдельно стоящего фундамента. Для расчета в вычислительном комплексе SCAD разработчики предусмотрели практически полный функционал для определения несущей способности по всем критериям проверки фундамента.

Итак, выполнив построение каркаса, например, металлического потребуется расчет отдельно стоящих фундаментов. Для этого в вычислительном комплексе SCAD необходимо указать узлы, закрепленные от смещения по заданным направлениям и углам поворота (именно в этих узлах можно выполнить расчет реакции опор). Анализу подвергаются чаще всего вертикальная реакция, горизонтальная и момент в плоскости работы конструкции. Вычислительный комплекс SCAD выводит реакции для всех узлов, отмеченных пользователем, как правило, рассматривается три комбинации нагрузок для:

Максимальные значения при большой загруженности схемы визуально определить непросто, можно воспользоваться инструментом «документирование», где с помощью вывода таблицы всех значений из вычислительного комплекса SCAD в MS Excel фильтруется нужные ячейки чисел.

Полученные комбинации значения необходимо далее использовать при расчете отдельно стоящего фундамента. Расчет отдельно стоящих фундаментов можно выполнять и вручную, для этого производятся вычисления давления под подошвой фундамента.

Ввиду возникающего момента, давление получается неравномерным. Вычисление краевых значений производится по формуле

  • N – сумма вертикальных нагрузок на фундамент, тс
  • A – площадь фундамента, м2
  • M — момент от равнодействующей всех нагрузок, действующих по подошве фундамента
  • W — момент сопротивления площади подошвы фундамента, м 3 (для ленточного фундамента длина сечения 1м) , где b – ширина фундамента.
Читайте также:  Как рассчитать сколько нужно арматуры для фундамента плиты

Следующим этапом расчета отдельно стоящего фундамента становится определение расчетного сопротивления грунта. Вычисления производятся по СП 22.13330.2011 «Основания зданий и сооружений», формула 5.7. Для расчета нужны инженерно-геологические изыскания слоев грунта рассматриваемой площадки строительства (или непосредственно под отдельно стоящем фундаменте).

Вычисления расчетного сопротивления грунта для отдельно стоящего фундамента можно также производить с помощью программы ЗАПРОС (сателлита вычислительного комплекса SCAD). В программе реализован расчет по СП 22.13330.2011 «Основания зданий и сооружений».

Получившееся значение R должно быть обязательно больше значения давления P. В противном случае требуется уменьшение давления на грунт, например, увеличением площади отдельно стоящего фундамента. Площадь фундамента и момент сопротивления сечения фундамента находятся в знаменателе формулы нахождения давления P, что и заставляет снижать показатель давления.

При расчете отдельно стоящего фундамента нельзя также забывать и о расчете фундаментной плиты на продавливание и вычисления несущей способности. Фундаментная плита по несущей способности рассчитывается как двух консольная балка, нагрузка на которую равна давлению на грунт (III закон Ньютона). Результатом расчета становится установка рабочей «нижней» арматуры сечения плиты.

Усилие на плиту от колонны приходит весьма существенное, поэтому при расчете на продавливание может возникнуть необходимость установки дополнительных ступеней отдельно стоящего фундамента.

Продавливание, как и расчет двух консольной балки, может выполнить программа АРБАТ (сателлита вычислительного комплекса SCAD).

При выполнении всего вышеописанного алгоритма можно считать расчет отдельно стоящего фундамента выполненным.

Теперь вернемся к схеме каркаса здания. Любой фундамент на грунтовом основании (кроме скального) проседает под действием той или иной нагрузки. Полученная дополнительная деформация схемы способствует изменению перераспределению усилий уже в элементах схемы. Отсюда появляется необходимость в некоторых случаях (наиболее ответственных) устанавливать не жесткое защемление, а упругую связь, в месте примыкания колонны к отдельно стоящему фундаменту. Вычислительный комплекс SCAD не вычисляет автоматически жесткость упругой связи, но можно эту операцию выполнить вручную. Жесткость упругой связи при вертикальном смещении равна отношению несущей способности отдеьлно стоящего фундамента к его осадке, полученное значение измеряется в т/м. Осадка может быть вычислена с помощью программы ЗАПРОС (сателлита вычислительного комплекса SCAD).

Произведя расчет отдельно стоящих фундаментов мы получаем более точную картину деформации здания, а значит и более точные усилия в конченых элементах.

Итак, с помощь вычислительного комплекса SCAD пользователь сможет выполнить требуемый расчет отдельно стоящих фундаментов, подобрать необходимую площадь основания, выполнить расчет на продавливание, определить крен здания, а также учесть перераспределение усилий в зависимости полученной осадки конструкции.

Источник

Моделирование столбчатых фундаментов в МКЭ

Всем привет. На связи Евгений Кондаков. Моделирование столбчатых фундаментов в КЭ-модели традиционно входит в ТОП-10 вопросов, задаваемых на курсах и в техподдержку.

Столбчатый фундамент условно можно отнести к «массивному телу». Массивное тело – тело, у которого все три размера имеют один порядок.

Исходя из этого, можно сказать, что лучше всего его моделировать объемными конечными элементами.

Забегая вперёд, скажу, что не стоит пытаться подбирать армирование столбчатого фундамента из КЭ-расчёта. Это лучше сделать вручную или использовать что-то типа ПК BASE/Фундамент/ФОК.

Но учесть наличие и влияние такого фундамента на надземные конструкции можно. Есть несколько способов моделирования, рассмотрим самые популярные из них:

Одноузловая упругая связь. Жёсткость связи в первом приближении можно вычислить перемножением площади основания фундамента на коэффициент постели под ним. Нагрузку на фундамент можно взять, посчитав нагрузку на фрагмент в ЛИРЕ-САПР или вычислив реакции связей в SCAD. Процесс может быть итерационным, т.к. связан с изменением размеров подошвы, следовательно, жёсткость КЭ-51,56 будет меняться.

Моделирование объёмными КЭ. Здесь мы получаем подробную КЭ-модель столбчатого фундамента. Только нужно правильно задать граничные условия. Наличие коэффициента постели под подошвой можно сымитировать, «подшив» к ней фиктивную плиту малой жёсткости, на которую уже можно назначить C1. Или, как вариант, не использовать фиктивную плиту и коэффициент постели, а вместо этого разместить в каждый узел подошвы упругую связь, жёсткость которой можно определить перемножением коэффициента постели на грузовую площадь вокруг каждого КЭ упругой связи.

Моделирование ступеней пластинчатыми КЭ, а подколонника – стержневым. Каждая вышележащая ступень смещается на жёсткой вставке вверх относительно нижележащей, для подколонника задаётся жёсткая вставка по длине равная сумме толщин ступеней.

Преимущество способов 2 и 3 заключается в том, что пластины с нагрузками можно передать в модуль ГРУНТ и посчитать таким образом переменный по площади коэффициент постели.

Все эти три способа при правильном моделировании оказывают приблизительно одинаковое влияние на усилия/напряжения в надземных конструкциях. Какой из них выбрать, решает расчётчик.

На сегодня у меня всё. Если статья понравилась, ставьте лайк, пишите в комментариях, какой способ используете Вы при моделировании таких фундаментов.

Источник

Scad армирование столбчатого фундамента

Скажите, пожалуйста, на каком основании назначаются жёсткости для 51 КЭ?

Зачем же так мучаться — заполнять таблицу в кроссе нужно 1 раз, задать примерные габариты площадки, скаважины и сохранить файл кросса, а уж когда создадите расчетную схему в scsd, выберете созданную вами площадку.
И шаг номер 2 вызывает сомнения — первоначально коэффициенты упругого основания можно назначить «от балды» и всем элементам плиты одинаковые, для того и нужен КРОСС, чтобы их вычислить путем нескольких итераций

На вопрос про жесткости я не смогу дать квалифицированного ответа. Это взято из опыта расчетов многих людей как лучшее решение. Такие варианты, как жестко защемить в двух или трех точках или оставить плиту вообще без опоры тоже имеют право на жизнь. В первом случае мы, возможно, в точках защемления получим пики армирования, во втором случае — большую осадку или ошибки при расчете. Все эти варианты сопоставимы друг с другом.

Анонимный ответ на анонимный комментарий. В общих чертах описал тоже самое. Да я мучился, пока не проникся тонкостями, поэтому и поделился своим опытом. Почему шаг 2 вызывает сомнение? Если потому, что «первоначально. коэффициент можно назначить от балды. «, то позволю себе заметить, что существуют множество методик приведения нагрузки на фундаментную плиты. Описанная мною во втором шаге методика распределенной нагрузки на плиту ранее до появления САПР была популярна и у неё до сих пор есть поклонники. Поэтому проанализировать результаты расчета по ней всегда полезно. За частую результаты её не отличаются от результатов бесконечных, описанных также во втором шаге, итераций.

для 51 элемента жесткость назначается от коэ постели элемента 0,7С1 х А^2
C1 коэф постели
А площадь элемента

Откуда информация, Дмитрий?

Автор молодец!! Еще что нибудь выкладывай)

Cпасибо за информацию.

К вопросу о жесткостях 51 КЭ см. «Расчетные модели сооружений и возможность их анализа» А.В. Перельмутер В. И. Сливкер 2011 г. стр. 449-450

Источник

Несколько примеров расчета в SCAD Office

Программный комплекс SCAD помимо расчетного модуля конечно-элементного моделирования имеет в своем составе набор программ, способных выполнять решение более частных задач. Ввиду своей автономности набор программ сателлитов можно использовать отдельно от основного расчетного модуля SCAD, причем не запрещается выполнять совместные расчеты с альтернативными программными комплексами (ПК ЛИРА 10, Robot Structural Analysis, STARK ES). В данной статье мы рассмотрим несколько примеров расчета в SCAD Office.

Пример подбора арматуры в ребре плиты заводской готовности в программе SCAD

Плита будет монтироваться на стройплощадке, например, на кирпичные стены шарнирно. Моделировать для такой задачи всю плиту, часть здания или целиком все здание считаю нецелесообразным, поскольку трудовые затраты крайне несоизмеримы. На помощь может прийти программа АРБАТ. Ребро рекомендуется нормами рассчитывать, как тавровое железобетонное сечение. Меню программного комплекса SCAD интуитивно-понятное: по заданному сечению, армированию и усилию инженер получает результат о несущей способности элемента со ссылкой на пункты нормативных документов. Результат расчета может быть автоматически сформирован в текстовом редакторе. На ввод данных уходит примерно 5-10 мин, что значительно меньше формирования конечно элементной модели ребристого перекрытия (не будем забывать, что в определенных ситуациях расчет методом конечных элементов дает больше расчетных возможностей).

Пример расчета закладных изделий в SCAD

Теперь вспомним расчет закладных изделий для крепления конструкций к железобетонным сечениям.

Нередко встречаю конструкторов, закладывающих параметры из конструктивных соображений, хотя проверить несущую способность закладных довольно просто. Для начала необходимо вычислить срезающее усилие в точке крепления закладной детали. Сделать это можно вручную, собрав нагрузки по грузовой площади, или по эпюре Q конечно-элементной модели. Затем воспользоваться специальным расчетным боком программы АРБАТ, занести данные по конструкции закладной детали и усилиям, и в итоге получить процент использования несущей способности.

Еще с одним интересным примером расчета в SCAD может столкнуться инженер: определение несущей способности деревянного каркаса. Как мы знаем, ввиду ряда причин расчетные программы МКЭ (метод конечных элементов) не имеют в своем арсенале модули расчета деревянных конструкций по российским нормативным документам. в связи с этим расчет может производится вручную или в другой программе. Программный комплекс SCAD предлагает инженеру программу ДЕКОР.

Помимо данных по сечению, программа ДЕКОР потребует от инженера ввода расчетных усилий, получить которые поможет ПК ЛИРА 10. Собрав расчетную модель, можно присвоить стержням параметрическое сечение дерева, задать модуль упругости дерева и получить усилия по деформационной схеме:

Полученные усилия далее необходимо задать в программе ДЕКОР для расчета сопротивления деревянного сечения.

В данном примере расчета в SCAD, критическим значением оказалась гибкость элемента, запас по предельному моменту сечений «солидный». Вспомнить предельное значение гибкости деревянных элементов поможет информационный блок программы ДЕКОР:

Пример расчета несущей способности фундамента в SCAD

Неотъемлемой частью моделирования свайно-плитного фундамента является расчет несущей способности и осадки сваи. Справится с задачей подобного рода, инженеру поможет программа ЗАПРОС. В ней разработчики реализовали расчет фундаментов согласно нормам «оснований и фундаментов» и «свайного фундамента» (в расчетных программах МКЭ таких возможностей не встретишь). Итак, чтобы смоделировать сваю, необходимо вычислить жесткость одноузлового конечного элемента. Жесткость измеряется в тс/м и равна отношению несущей способности сваи к ее осадке. Моделирование рекомендуется выполнять итерационно: в начале задавать приближенную жесткость, затем уточнять значение жесткости по вычисленным параметрам сваи. Построенная модель расчета методом конечных элементов позволит нам не только точно найти нагрузку на сваю, но и рассчитать армирование ростверка:

После расчета конструкции пользователь ПК ЛИРА 10 сможет вычислить требуемую нагрузку на сваю по выводу мозаики усилий в одноузловом конечном элементе. Полученное максимальное усилие будет являться требуемой расчетной нагрузкой на сваю, несущая способность выбранной сваи должна превышать требуемое значение.

В качестве исходных данных в программу ЗАПРОС вводиться тип сваи (буровая, забивная), параметры сечения сваи и грунтовые условия согласно данным геологических изысканий.

Пример расчета узловых соединений в SCAD

Расчет узловых соединений – важная часть анализа несущей способности зданий. Однако, зачастую, конструктора пренебрегают данным расчетом, результаты могут оказать крайне катастрофическим.

На рисунке приведен пример отсутствие обеспечения несущей способности стенки верхнего пояса подстропильной фермы в точке крепления стропильной фермы. Согласно СП «Стальные конструкции» подобные расчеты производятся в обязательно порядке. В программа расчета методом конечных элементов и такого расчета тоже не встретишь. Выходом из ситуации может стать программа КОМЕТА-2. Здесь пользователь найдет расчет узловых соединений согласно действующих нормативных документов.

Наш узел – ферменный и для его расчета необходимо выбрать советующий пункт в программе. Далее пользователь выбривает очертание пояса (наш случай V-образный), геометрические параметры панели, усилия каждого стержня. Усилия, как правило, вычисляются в расчетных программах МКЭ. По введенным данным программа формирует чертеж для наглядного представления конструкции узла и вычисляет несущую способность по всем типам проверки согласно нормативным документам.

Пример построения расчета МКИ в SCAD

Построение моделей расчета методом конечных элементов не обходится без приложения нагрузок, вычисленные вручную значения присваиваются в расчетных программах МКЭ на элемент. Помощь в сборе ветровых и снеговых нагрузках инженеру окажет программа ВЕСТ. Программа включает в себя несколько расчетных модулей, позволяющих по введенном району строительства и очертанием контура здания вычисляет ветровую и снеговую нагрузку (самые распространенные расчетные модули программы ВЕСТ). Так, при расчете навеса, конструктор должен указать высоту конька, угол наклона и ширину ската. По полученным эпюрам нагрузка вводится в расчетную программу, например, ПК ЛИРА 10.4.

В качестве вывода, могу сказать, что программный комплекс SCAD и его сателлиты позволяют пользователю существенно снизить трудозатраты при вычислении локальных задач, а также формировать точные расчетные модели, а также содержат справочные данные, необходимые в работе инженеров — строителей. Автономность программ позволяет конструкторам использовать их в сочетании с любыми расчетными комплексами, основанных на расчете методом конечных элементов.

Также рекомендую посмотреть вебинар по совместному использованию ПК ЛИРА 10 и программы ЗАПРОС (SCAD office) на примере расчета свайного основания.

Источник

Оцените статью