Scad расчет фундамента пример

Scad расчет фундамента пример

Скажите, пожалуйста, на каком основании назначаются жёсткости для 51 КЭ?

Зачем же так мучаться — заполнять таблицу в кроссе нужно 1 раз, задать примерные габариты площадки, скаважины и сохранить файл кросса, а уж когда создадите расчетную схему в scsd, выберете созданную вами площадку.
И шаг номер 2 вызывает сомнения — первоначально коэффициенты упругого основания можно назначить «от балды» и всем элементам плиты одинаковые, для того и нужен КРОСС, чтобы их вычислить путем нескольких итераций

На вопрос про жесткости я не смогу дать квалифицированного ответа. Это взято из опыта расчетов многих людей как лучшее решение. Такие варианты, как жестко защемить в двух или трех точках или оставить плиту вообще без опоры тоже имеют право на жизнь. В первом случае мы, возможно, в точках защемления получим пики армирования, во втором случае — большую осадку или ошибки при расчете. Все эти варианты сопоставимы друг с другом.

Читайте также:  Ширина ленточного фундамента для бруса 150

Анонимный ответ на анонимный комментарий. В общих чертах описал тоже самое. Да я мучился, пока не проникся тонкостями, поэтому и поделился своим опытом. Почему шаг 2 вызывает сомнение? Если потому, что «первоначально. коэффициент можно назначить от балды. «, то позволю себе заметить, что существуют множество методик приведения нагрузки на фундаментную плиты. Описанная мною во втором шаге методика распределенной нагрузки на плиту ранее до появления САПР была популярна и у неё до сих пор есть поклонники. Поэтому проанализировать результаты расчета по ней всегда полезно. За частую результаты её не отличаются от результатов бесконечных, описанных также во втором шаге, итераций.

для 51 элемента жесткость назначается от коэ постели элемента 0,7С1 х А^2
C1 коэф постели
А площадь элемента

Откуда информация, Дмитрий?

Автор молодец!! Еще что нибудь выкладывай)

Cпасибо за информацию.

К вопросу о жесткостях 51 КЭ см. «Расчетные модели сооружений и возможность их анализа» А.В. Перельмутер В. И. Сливкер 2011 г. стр. 449-450

Источник

Фундаментная плита в SCAD. Часть 1: Разработка расчетной схемы

Любое здание или сооружение имеет фундамент, и башни с мачтами не исключение. Существуют разные варианты фундаментов, выбор типа которых зависит от множества факторов. В частности, для мачт и башен наиболее популярны столбчатые и плитные фундаменты со сваями и без. В текущей статье будет рассматриваться фундаментная плита в SCAD под опору антенную, а именно — башню.

Исходные данные

Как было оговорено выше, фундаментная плита в SCAD будет рассчитываться под башню, расстояние между башмаками которой составляет 3,5 м. Соответственно, задаемся (для примера) общими габаритами квадратной в плане плиты с шириной стороны в 4,5 м с консолью практически в 0.5 м.

Создание расчетной схемы фундаментной плиты в SCAD

Шаг 1. Создание очертания плиты

Для того, чтобы создать очертание плиты, необходимо создать в SCAD 4 граничных узла. Как вставлять узлы и добавлять другие на расстоянии можно узнать в п. «Создание узлов» в этой статье.

Рекомендую строить расчетную схему симметрично осям, то есть, если длина плиты 4,5 м, то отступ точек от центра будет составлять 2,25 м (рис. 1). После того, как все четыре узла будут введены в SCAD (рис. 2) , необходимо замкнуть их контуром, называемой пластиной.

  • Рис. 1. Ввод узлов
  • Рис. 2. Введенные узлы

Чтобы ввести пластину, необходимо на панели инструментов в закладке «Узлы и элементы» перейти в сверток «Элементы» и выбрать «Ввод 4-ех узловых пластин» (рис. 3). При активированном инструменте ввода пластин выделяются 4 созданных ранее узла и нажимается галочка «ОК». Итог представлен на рис. 4.

  • Рис. 3. Ввод пластин
  • Рис. 4. Созданный контур фундаментной плиты

Напомню, что SCAD — программа для расчета по методу конечных элементов, поэтому созданную пластину требуется разбить на множество маленьких пластинок, причем чем больше их будет, тем точнее расчет. Но для оптимального расчета достаточно задаваться шириной ячеек, равной предполагаемой толщины плиты.

Для примера можно взять разбиение контура плиты на участки по 0.3 х 0.3 м. Для этого нужно выбрать инструмент «Дробление 4-ех узловых пластин» (рис. 5) и задать количество дроблений. Как указывалось выше, количество дроблений равно: 4,5 м / 0,3 м = 15 шт (рис. 6). Полученный вид триангулированной (так называется процесс разбиения на мелкие элементы) плиты представлен на рис. 7.

  • Рис. 5. инструмент «Дробление 4-ех узловых пластин»
  • Рис. 6. Ввод характеристик дробления
  • Рис. 7. Триангулированная плита

Шаг 2. Вставка опорных узлов башни на плиту

Если ранее производился расчет башни или мачты, то опорные узлы (рис. 8) с той схемы нужно вставить на проектируемую фундаментную плиту. Так как расстояние между узлами равно 3.5 м, то новые узлы вставляются с расстоянием 1,75 м от центра плиты. Расставленные точки на плите представлены на рис. 9.

  • Рис. 8. Узлы башни, которые надо добавить на плиту
  • Рис. 9. Добавленные опорные узлы на плиту
  • Рис. 10. Кнопка «Дробление пластин с учетом промежуточных узлов»

Следует отметить, что добавленные узлы на плиту никак с ней не связаны, их нужно включить в разбивочную сетку. В SCAD существует специальный инструмент для того, чтобы осуществить это: «Узлы и элементы» — «Элементы» — «Дробление пластин с учетом промежуточных узлов» (рис. 10). Чтобы все сработало, надо просто выделить пластину, на которой лежит узел, нажать «ОК» и образуются треугольные пластины (рис. 11).

  • Рис. 11. Фундаментная плита в SCAD с учетом опорных узлов башни

Шаг 3. Назначение жесткости опорной плите

Для пластин жесткость задается нажатием кнопки «Назначение жесткостей пластинам» (рис. 12). В появившемся окне (рис. 13) выбираются характеристики проектируемой плиты — «ОК» — выбор всей плиты и осуществляется применение новых свойств.

  • Рис. 12. Кнопка «Назначение жесткостей пластинам»
  • Рис. 13. Окно настройки жесткостей пластинам

Шаг 4. Создание загружений при расчете фундаментной плиты в SCAD

В текущей расчетной схеме можно задать два загружения:

  • собственный вес;
  • нагрузка от опоры антенной.

Собственный вес прикладывается SCADом автоматически, аналогично тому, как описано в этой статье. Нагрузка от опоры антенной предоставляются от отдельного расчета. В данном случае нагрузки показаны на рис. 14, а приложенные усилия на рис. 15.

  • Рис. 14. Нагрузки от ОА
  • Рис. 15. Приложенные нагрузки от ОА

Шаг 5. Создание комбинации загружений

В древе управления расчетным проектом в подразделе «Специальные исходные данные» выбрать «Комбинации загружений». В этом окне нужно создать совокупность одновременно действующих на фундаментную плиту нагрузок (рис. 16).

  • Рис. 16. Комбинации загружений
  • Рис. 18. Связи на фундаментной плите

Шаг 6. Назначение связей на плиту

В качестве упрощения, можно задать ограничение плиты в двух диаметрально противоположных узлах (углах), где в первом будут ограничения по X и Y, а во втором по X (рис. 18). Но лучше всего использовать связи конечной жесткости.

В следующей части «Фундаментная плита в SCAD» речь пойдет о работе программы КРОСС и формировании коэффициентов постели.

Источник

Несколько примеров расчета в SCAD Office

Программный комплекс SCAD помимо расчетного модуля конечно-элементного моделирования имеет в своем составе набор программ, способных выполнять решение более частных задач. Ввиду своей автономности набор программ сателлитов можно использовать отдельно от основного расчетного модуля SCAD, причем не запрещается выполнять совместные расчеты с альтернативными программными комплексами (ПК ЛИРА 10, Robot Structural Analysis, STARK ES). В данной статье мы рассмотрим несколько примеров расчета в SCAD Office.

Пример подбора арматуры в ребре плиты заводской готовности в программе SCAD

Плита будет монтироваться на стройплощадке, например, на кирпичные стены шарнирно. Моделировать для такой задачи всю плиту, часть здания или целиком все здание считаю нецелесообразным, поскольку трудовые затраты крайне несоизмеримы. На помощь может прийти программа АРБАТ. Ребро рекомендуется нормами рассчитывать, как тавровое железобетонное сечение. Меню программного комплекса SCAD интуитивно-понятное: по заданному сечению, армированию и усилию инженер получает результат о несущей способности элемента со ссылкой на пункты нормативных документов. Результат расчета может быть автоматически сформирован в текстовом редакторе. На ввод данных уходит примерно 5-10 мин, что значительно меньше формирования конечно элементной модели ребристого перекрытия (не будем забывать, что в определенных ситуациях расчет методом конечных элементов дает больше расчетных возможностей).

Пример расчета закладных изделий в SCAD

Теперь вспомним расчет закладных изделий для крепления конструкций к железобетонным сечениям.

Нередко встречаю конструкторов, закладывающих параметры из конструктивных соображений, хотя проверить несущую способность закладных довольно просто. Для начала необходимо вычислить срезающее усилие в точке крепления закладной детали. Сделать это можно вручную, собрав нагрузки по грузовой площади, или по эпюре Q конечно-элементной модели. Затем воспользоваться специальным расчетным боком программы АРБАТ, занести данные по конструкции закладной детали и усилиям, и в итоге получить процент использования несущей способности.

Еще с одним интересным примером расчета в SCAD может столкнуться инженер: определение несущей способности деревянного каркаса. Как мы знаем, ввиду ряда причин расчетные программы МКЭ (метод конечных элементов) не имеют в своем арсенале модули расчета деревянных конструкций по российским нормативным документам. в связи с этим расчет может производится вручную или в другой программе. Программный комплекс SCAD предлагает инженеру программу ДЕКОР.

Помимо данных по сечению, программа ДЕКОР потребует от инженера ввода расчетных усилий, получить которые поможет ПК ЛИРА 10. Собрав расчетную модель, можно присвоить стержням параметрическое сечение дерева, задать модуль упругости дерева и получить усилия по деформационной схеме:

Полученные усилия далее необходимо задать в программе ДЕКОР для расчета сопротивления деревянного сечения.

В данном примере расчета в SCAD, критическим значением оказалась гибкость элемента, запас по предельному моменту сечений «солидный». Вспомнить предельное значение гибкости деревянных элементов поможет информационный блок программы ДЕКОР:

Пример расчета несущей способности фундамента в SCAD

Неотъемлемой частью моделирования свайно-плитного фундамента является расчет несущей способности и осадки сваи. Справится с задачей подобного рода, инженеру поможет программа ЗАПРОС. В ней разработчики реализовали расчет фундаментов согласно нормам «оснований и фундаментов» и «свайного фундамента» (в расчетных программах МКЭ таких возможностей не встретишь). Итак, чтобы смоделировать сваю, необходимо вычислить жесткость одноузлового конечного элемента. Жесткость измеряется в тс/м и равна отношению несущей способности сваи к ее осадке. Моделирование рекомендуется выполнять итерационно: в начале задавать приближенную жесткость, затем уточнять значение жесткости по вычисленным параметрам сваи. Построенная модель расчета методом конечных элементов позволит нам не только точно найти нагрузку на сваю, но и рассчитать армирование ростверка:

После расчета конструкции пользователь ПК ЛИРА 10 сможет вычислить требуемую нагрузку на сваю по выводу мозаики усилий в одноузловом конечном элементе. Полученное максимальное усилие будет являться требуемой расчетной нагрузкой на сваю, несущая способность выбранной сваи должна превышать требуемое значение.

В качестве исходных данных в программу ЗАПРОС вводиться тип сваи (буровая, забивная), параметры сечения сваи и грунтовые условия согласно данным геологических изысканий.

Пример расчета узловых соединений в SCAD

Расчет узловых соединений – важная часть анализа несущей способности зданий. Однако, зачастую, конструктора пренебрегают данным расчетом, результаты могут оказать крайне катастрофическим.

На рисунке приведен пример отсутствие обеспечения несущей способности стенки верхнего пояса подстропильной фермы в точке крепления стропильной фермы. Согласно СП «Стальные конструкции» подобные расчеты производятся в обязательно порядке. В программа расчета методом конечных элементов и такого расчета тоже не встретишь. Выходом из ситуации может стать программа КОМЕТА-2. Здесь пользователь найдет расчет узловых соединений согласно действующих нормативных документов.

Наш узел – ферменный и для его расчета необходимо выбрать советующий пункт в программе. Далее пользователь выбривает очертание пояса (наш случай V-образный), геометрические параметры панели, усилия каждого стержня. Усилия, как правило, вычисляются в расчетных программах МКЭ. По введенным данным программа формирует чертеж для наглядного представления конструкции узла и вычисляет несущую способность по всем типам проверки согласно нормативным документам.

Пример построения расчета МКИ в SCAD

Построение моделей расчета методом конечных элементов не обходится без приложения нагрузок, вычисленные вручную значения присваиваются в расчетных программах МКЭ на элемент. Помощь в сборе ветровых и снеговых нагрузках инженеру окажет программа ВЕСТ. Программа включает в себя несколько расчетных модулей, позволяющих по введенном району строительства и очертанием контура здания вычисляет ветровую и снеговую нагрузку (самые распространенные расчетные модули программы ВЕСТ). Так, при расчете навеса, конструктор должен указать высоту конька, угол наклона и ширину ската. По полученным эпюрам нагрузка вводится в расчетную программу, например, ПК ЛИРА 10.4.

В качестве вывода, могу сказать, что программный комплекс SCAD и его сателлиты позволяют пользователю существенно снизить трудозатраты при вычислении локальных задач, а также формировать точные расчетные модели, а также содержат справочные данные, необходимые в работе инженеров — строителей. Автономность программ позволяет конструкторам использовать их в сочетании с любыми расчетными комплексами, основанных на расчете методом конечных элементов.

Также рекомендую посмотреть вебинар по совместному использованию ПК ЛИРА 10 и программы ЗАПРОС (SCAD office) на примере расчета свайного основания.

Источник

Оцените статью